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Foreword

After writing up class notes for General Physics I (calculus-based classical mechanics) and Introductory
Physics II (algebra-based waves, acoustics, electricity and magnetism, optics, and modern physics) for
courses at Prince George’s Community College, I realized that the notes together covered most of the ma-
jor areas of physics, with one important exception: thermodynamics. To make the set of notes complete, I
decided to write up these notes on thermodynamics to complement the other two sets of notes. I’ve written
them at the level of the General Physics (calculus-based) sequence.

D.G. Simpson, Ph.D.
Largo, Maryland
January 26, 2013
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Chapter 1

What is Physics?

Physics is the most fundamental of the sciences. Its goal is to learn how the Universe works at the most
fundamental level—and to discover the basic laws by which it operates. Theoretical physics concentrates
on developing the theory and mathematics of these laws, while applied physics focuses attention on the
application of the principles of physics to practical problems. Experimental physics lies at the intersection
of physics and engineering; experimental physicists have the theoretical knowledge of theoretical physicists,
and they know how to build and work with scientific equipment.

Physics is divided into a number of sub-fields, and physicists are trained to have some expertise in all of
them. This variety is what makes physics one of the most interesting of the sciences—and it makes people
with physics training very versatile in their ability to do work in many different technical fields.

The major fields of physics are:

• Classical mechanics is the study the motion of bodies according to Newton’s laws of motion.

• Electricity and magnetism are two closely related phenomena that are together considered a single field
of physics.

• Quantum mechanics describes the peculiar motion of very small bodies (atomic sizes and smaller).

• Optics is the study of light.

• Acoustics is the study of sound.

• Thermodynamics and statisticalmechanics are closely related fields that study the nature of heat. Ther-
modynamics is the subject of these notes.

• Solid-state physics is the study of solids—most often crystalline metals.

• Plasma physics is the study of plasmas (ionized gases).

• Atomic, nuclear, and particle physics study of the atom, the atomic nucleus, and the particles that make
up the atom.

• Relativity includes Albert Einstein’s theories of special and general relativity. Special relativity de-
scribes the motion of bodies moving at very high speeds (near the speed of light), while general rela-
tivity is Einstein’s theory of gravity.

The fields of cross-disciplinary physics combine physics with other sciences. These include astrophysics
(physics of astronomy), geophysics (physics of geology), biophysics (physics of biology), chemical physics
(physics of chemistry), and mathematical physics (mathematical theories related to physics).
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Besides acquiring a knowledge of physics for its own sake, the study of physics will give you a broad tech-
nical background and set of problem-solving skills that you can apply to wide variety of other fields. Some
students of physics go on to study more advanced physics, while others find ways to apply their knowledge
of physics to such diverse subjects as mathematics, engineering, biology, medicine, and finance.
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Chapter 2

Units

The phenomena of Nature have been found to obey certain physical laws; one of the primary goals of physics
research is to discover those laws. It has been known for several centuries that the laws of physics are
appropriately expressed in the language of mathematics, so physics and mathematics have enjoyed a close
connection for quite a long time.

In order to connect the physical world to the mathematical world, we need to make measurements of the
real world. In making a measurement, we compare a physical quantity with some agreed-upon standard, and
determine how many such standard units are present. For example, we have a precise definition of a unit of
length called a mile, and have determined that there are about 92,000,000 such miles between the Earth and
the Sun.

It is important that we have very precise definitions of physical units — not only for scientific use, but also
for trade and commerce. In practice, we define a few base units, and derive other units from combinations of
those base units. For example, if we define units for length and time, then we can define a unit for speed as
the length divided by time (e.g. miles/hour).

How many base units do we need to define? There is no magic number; in fact it is possible to define
a system of units using only one base unit (and this is in fact done for so-called natural units). For most
systems of units, it is convenient to define base units for length, mass, and time; a base electrical unit may
also be defined, along with a few lesser-used base units.

2.1 Systems of Units

Several different systems of units are in common use. For everyday civil use, most of the world uses metric
units. The United Kingdom uses both metric units and an imperial system. Here in the United States, U.S.
customary units are most common for everyday use.1

There are actually several “metric” systems in use. They can be broadly grouped into two categories:
those that use the meter, kilogram, and second as base units (MKS systems), and those that use the centimeter,
gram, and second as base units (CGS systems). There is only one MKS system, called SI units. We will
mostly use SI units in this course.

1In the mid-1970s the U.S. government attempted to switch the United States to the metric system, but the idea was abandoned after
strong public opposition. One remnant from that era is the two-liter bottle of soda pop.
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2.2 SI Units

SI units (which stands for Système International d’unités) are based on the meter as the base unit of length,
the kilogram as the base unit of mass, and the second as the base unit of time. SI units also define four
other base units (the ampere, kelvin, candela, and mole, to be described later). Any physical quantity that
can be measured can be expressed in terms of these base units or some combination of them. SI units are
summarized in Appendix E.

Length (Meter)

The SI base unit of length, the meter (m), has been re-defined more times than any other unit, due to the need
for increasing accuracy. Originally (1793) the meter was defined to be 1=10;000;000 the distance from the
North Pole to the equator, along a line going through Paris.2 Then, in 1889, the meter was re-defined to be the
distance between two lines engraved on a prototype meter bar kept in Paris. Then in 1960 it was re-defined
again: the meter was defined as the distance of 1;650;763:73 wavelengths of the orange-red emission line in
the krypton-86 atomic spectrum. Still more stringent accuracy requirements led to the the current definition
of the meter, which was implemented in 1983: the meter is now defined to be the distance light in vacuum
travels in 1=299;792;458 second. Because of this definition, the speed of light is now exactly 299;792;458
m/s.

U.S. Customary units are legally defined in terms of metric equivalents. For length, the foot (ft) is defined
to be exactly 0.3048 meter.

Mass (Kilogram)

Originally the kilogram (kg) was defined to be the mass of 1 liter (0.001 m3) of water. The need for more
accuracy required the kilogram to be re-defined to be the mass of a standard mass called the International
Prototype Kilogram (IPK, frequently designated by the Gothic letter K), which is kept in a vault at the Bureau
International des Poids et Mesures (BIPM) in Paris. The kilogram is the only base unit still defined in terms
of a prototype, rather than in terms of an experiment that can be duplicated in the laboratory.

The International Prototype Kilogram is a small cylinder of platinum-iridiumalloy (90% platinum), about
the size of a golf ball. In 1884, a set of 40 duplicates of the IPK was made; each country that requested one
got one of these duplicates. The United States received two of these: the duplicate called K20 arrived here
in 1890, and has been the standard of mass for the U.S. ever since. The second copy, called K4, arrived later
that same year, and is used as a constancy check on K20. Finally, in 1996 the U.S. got a third standard called
K79; this is used for mass stability studies. These duplicates are kept at the National Institutes of Standards
and Technology (NIST) in Gaithersburg, Maryland. They are kept under very controlled conditions under
several layers of glass bell jars and are periodically cleaned. From time to time they are returned to the BIPM
in Paris for re-calibration. For reasons not entirely understood, very careful calibration measurements show
that the masses of the duplicates do not stay exactly constant. Because of this, physicists are considering
re-defining the kilogram sometime in the next few years.

Another common metric (but non-SI) unit of mass is the metric ton, which is 1000 kg (a little over 1 short
ton).

In U.S. customary units, the pound-mass (lbm) is defined to be exactly 0:45359237 kg.

Mass vs. Weight

Mass is not the same thing as weight, so it’s important not to confuse the two. The mass of a body is a
measure of the total amount of matter it contains; the weight of a body is the gravitational force on it due to
the Earth’s gravity. At the surface of the Earth, mass m and weight W are proportional to each other:

2If you remember this original definition, then you can remember the circumference of the Earth: about 40;000;000 meters.
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W D mg; (2.1)

where g is the acceleration due to the Earth’s gravity, equal to 9.80 m/s2. Remember: mass is mass, and is
measured in kilograms; weight is a force, and is measured in force units of newtons.

Time (Second)

Originally the base SI unit of time, the second (s), was defined to be 1=60 of 1=60 of 1=24 of the length of
a day, so that 60 seconds D 1 minute, 60 minutes D 1 hour, and 24 hours D 1 day. High-precision time
measurements have shown that the Earth’s rotation rate has short-term irregularities, along with a long-term
slowing due to tidal forces. So for a more accurate definition, in 1967 the second was re-defined to be based
on a definition using atomic clocks. The second is now defined to be the time required for 9;192;631;770
oscillations of a certain type of radiation emitted from a cesium-133 atom.

Although officially the symbol for the second is “s”, you will also often see people use “sec” to avoid
confusing lowercase “s” with the number “5”.

The Ampere, Kelvin, and Candela

For this course, most quantities will be defined entirely in terms of meters, kilograms, and seconds. There are
four other SI base units, though: the ampere (A) (the base unit of electric current); the kelvin (K) (the base
unit of temperature); the candela (cd) (the base unit of luminous intensity, or light brightness); and the mole
(mol) (the base unit of amount of substance).

Amount of Substance (Mole)

Since we may have a use for the mole in this course, let’s look at its definition in detail. The simplest way to
think of it is as the name for a number. Just as “thousand” means 1;000, “million” means 1;000;000, and “bil-
lion” means 1;000;000;000, in the same way “mole” refers to the number 602;214;129;000;000;000;000;000,
or 6:02214129� 1023. You could have a mole of grains of sand or a mole of Volkswagens, but most often the
mole is used to count atoms or molecules. There is a reason this number is particularly useful: since each nu-
cleon (proton and neutron) in an atomic nucleus has an average mass of 1:660538921� 10�24 grams (called
an atomic mass unit, or amu), then there are 1=.1:660538921� 10�24/, or 6:02214129� 1023 nucleons per
gram. In other words, one mole of nucleons has a mass of 1 gram. Therefore, if A is the atomic weight of an
atom, then A moles of nucleons has a mass of A grams. But A moles of nucleons is the same as 1 mole of
atoms, so one mole of atoms has a mass (in grams) equal to the atomic weight. In other words,

moles of atoms D grams

atomic weight
(2.2)

Similarly, when counting molecules,

moles of molecules D grams

molecular weight
(2.3)

In short, the mole is useful when you need to convert between the mass of a material and the number of
atoms or molecules it contains.

It’s important to be clear about what exactly you’re counting (atoms or molecules) when using moles. It
doesn’t really make sense to talk about “a mole of oxygen”, any more than it would be to talk about “100 of
oxygen”. It’s either a “mole of oxygen atoms” or a “mole of oxygen molecules”.3

Interesting fact: there is about 1/2 mole of stars in the observable Universe.
3Sometimes chemists will refer to a “mole of oxygen” when it’s understood whether the oxygen in question is in the atomic (O) or

molecular (O2) state.
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SI Derived Units

In addition to the seven base units (m, kg, s, A, K, cd, mol), there are a number of so-called SI derived units
with special names. We’ll introduce these as needed, but a summary of all of them is shown in Appendix E
(Table E-2). These are just combinations of base units that occur often enough that it’s convenient to give
them special names.

Plane Angle (Radian)

One derived SI unit that we will encounter frequently is the SI unit of plane angle. Plane angles are commonly
measured in one of two units: degrees or radians.4 You’re probably familiar with degrees already: one full
circle is 360ı, a semicircle is 180ı, and a right angle is 90ı.

The SI unit of plane angle is the radian, which is defined to be that plane angle whose arc length is equal
to its radius. This means that a full circle is 2� radians, a semicircle is � radians, and a right angle is �=2
radians. To convert between degrees and radians, then, we have:

degrees D radians � 180

�
(2.4)

and

radians D degrees � �

180
(2.5)

The easy way to remember these formulæ is to think in terms of units: 180 has units of degrees and � has
units of radians, so in the first equation units of radians cancel on the right-hand side to leave degrees, and in
the second equation units of degrees cancel on the right-hand side to leave radians.

Occasionally you will see a formula that involves a “bare” angle that is not the argument of a trigonometric
function like the sine, cosine, or tangent. In such cases it is understood that the angle must be in radians. For
example, the radius of a circle r , angle � , and arc length s are related by

s D r�; (2.6)

where it is understood that � is in radians.
See Appendix K for a further discussion of plane and solid angles.

SI Prefixes

It’s often convenient to define both large and small units that measure the same thing. For example, in English
units, it’s convenient to measure small lengths in inches and large lengths in miles.

In SI units, larger and smaller units are defined in a systematic way by the use of prefixes to the SI base
or derived units. For example, the base SI unit of length is the meter (m), but small lengths may also be
measured in centimeters (cm, 0.01 m), and large lengths may be measured in kilometers (km, 1000 m). Table
E-3 in Appendix E shows all the SI prefixes and the powers of 10 they represent. You should memorize the
powers of 10 for all the SI prefixes in this table.

To use the SI prefixes, simply add the prefix to the front of the name of the SI base or derived unit. The
symbol for the prefixed unit is the symbol for the prefix written in front of the symbol for the unit. For
example, kilometer (km) D 103 meter, microsecond (�s) D 10�6 s. But put the prefix on the gram (g), not
the kilogram: for example, 1 microgram (�g) D 10�6 g. For historical reasons, the kilogram is the only SI
base or derived unit with a prefix.

4A third unit implemented in many calculators is the grad: a right angle is 100 grads and a full circle is 400 grads. You may encounter
grads in some older literature, such as Laplace’s MécaniqueCéleste. Almost nobody uses grads today, though.

11



Prince George’s Community College Thermodynamics D.G. Simpson

2.3 CGS Systems of Units

In some fields of physics (e.g. solid-state physics, plasma physics, and astrophysics), it has been customary to
use CGS units rather than SI units, so you may encounter them occasionally. There are several different CGS
systems in use: electrostatic, electromagnetic, Gaussian, and Heaviside-Lorentz units. These systems differ
in how they define their electric and magnetic units. Unlike SI units, none of these CGS systems defines a
base electrical unit, so electric and magnetic units are all derived units. The most common of these CGS
systems is Gaussian units, which are summarized in Appendix F.

SI prefixes are used with CGS units in the same way they’re used with SI units.

2.4 British Engineering Units

Another system of units that is common in some fields of engineering is British engineering units. In this
system, the base unit of length is the foot (ft), and the base unit of time is the second (s). There is no base
unit of mass; instead, one uses a base unit of force called the pound-force (lbf). Mass in British engineering
units is measured units of slugs, where 1 slug has a weight of 32.17404855 lbf.

A related unit of mass (not part of the British engineering system) is called the pound-mass (lbm). At
the surface of the Earth, a mass of 1 lbm has a weight of 1 lbf, so sometimes the two are loosely used
interchangeably and called the pound (lb), as we do every day when we speak of weights in pounds.

SI prefixes are not used in the British engineering system.

2.5 Units as an Error-Checking Technique

Checking units can be used as an important error-checking technique called dimensional analysis. If you
derive an equation and find that the units don’t work out properly, then you can be certain you made a
mistake somewhere. If the units are correct, it doesn’t necessarily mean your derivation is correct (since you
could be off by a factor of 2, for example), but it does give you some confidence that you at least haven’t
made a units error. So checking units doesn’t tell you for certain whether or not you’ve made a mistake, but
it does help.

Here are some basic principles to keep in mind when working with units:

1. Units on both sides of an equation must match.

2. When adding or subtracting two quantities, they must have the same units.

3. The argument for functions like sin, cos, tan, sin�1, cos�1, tan�1, log, and exp must be dimensionless.

4. When checking units, radians and steradians can be considered dimensionless.

Sometimes it’s not clear whether or not the units match on both sides of the equation, for example when
both sides involve derived SI units. In that case, it may be useful to break all the derived units down in terms
of base SI units (m, kg, s, A, K, mol, cd). Table E-2 in Appendix E shows each of the derived SI units broken
down in terms of base SI units.

2.6 Unit Conversions

It is very common to have to work with quantities that are given in units other than the units you’d like to work
with. Converting from one set of units to another involves a straightforward, virtually foolproof technique
that’s very simple to double-check. We’ll illustrate the method here with some examples.

12
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Appendix J gives a number of important conversion factors. More conversion factors are available from
sources such as the CRC Handbook of Chemistry and Physics.

1. Write down the unit conversion factor as a ratio, and fill in the units in the numerator and denominator
so that the units cancel out as needed.

2. Now fill in the numbers so that the numerator and denominator contain the same length, time, etc. (This
is because you want each factor to be a multiplication by 1, so that you don’t change the quantity—only
its units.)

Simple Conversions

A simple unit conversion involves only one conversion factor. The method for doing the conversion is best
illustrated with an example.

Example. Convert 7 feet to inches.
Solution. First write down the unit conversion factor as a ratio, filling in the units as needed:

.7 ft/� in

ft
(2.7)

Notice that the units of feet cancel out, leaving units of inches. The next step is to fill in numbers so that the
same length is in the numerator and denominator:

.7 ft/� 12 in

1 ft
(2.8)

Now do the arithmetic:

.7 ft/� 12 in

1 ft
D 84 inches: (2.9)

More Complex Conversions

More complex conversions may involve more than one conversion factor. You’ll need to think about what
conversion factors you know, then put together a chain of them to get to the units you want.

Example. Convert 60 miles per hour to feet per second.
Solution. First, write down a chain of conversion factor ratios, filling in units so that they cancel out

correctly:

60
mile

hr
� ft

mile
� hr

sec
(2.10)

Units cancel out to leave ft/sec. Now fill in the numbers, putting the same length in the numerator and
denominator in the first factor, and the same time in the numerator and denominator in the second factor:

60
mile

hr
� 5280 ft

1 mile
� 1 hr

3600 sec
(2.11)

Finally, do the arithmetic:

60
mile

hr
� 5280 ft

1 mile
� 1 hr

3600 sec
D 88

ft

sec
(2.12)
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Example. Convert 250;000 furlongs per fortnight to meters per second.
Solution. We don’t know how to convert furlongs per fortnight directly to meters per second, so we’ll have

to come up with a chain of conversion factors to do the conversion. We do know how to convert: furlongs
to miles, miles to kilometers, kilometers to meters, fortnights to weeks, weeks to days, days to hours, hours
to minutes, and minutes to seconds. So we start by writing conversion factor ratios, putting units where they
need to be so that the result will have the desired target units (m/s):

250;000
furlong

fortnight
� mile

furlong
� km

mile
� m

km
� fortnight

week
� week

day
� day

hr
� hr

min
� min

sec

If you check the units here, you’ll see that almost everything cancels out; the only units left are m/s, which is
what we want to convert to. Now fill in the numbers: we want to put either the same length or the same time
in both the numerator and denominator:

250;000
furlong

fortnight
� 1 mile

8 furlongs
� 1:609344 km

1 mile
� 1000 m

1 km
� 1 fortnight

2 weeks
� 1 week

7 days
� 1 day

24 hr
� 1 hr

60 min
� 1 min

60 sec

D 41:58m=s

Conversions Involving Powers

Occasionally we need to do something like convert an area or volume when we know only the length conver-
sion factor.

Example. Convert 2000 cubic feet to gallons.
Solution. Let’s think about what conversion factors we know. We know the conversion factor between

gallons and cubic inches. We don’t know the conversion factor between cubic feet and cubic inches, but we
can convert between feet and inches. The conversion factors will look like this:

2000 ft3 �
�

in

ft

�3

� gal

in3
(2.13)

With these units, the whole expression reduces to units of gallons. Now fill in the same length in the numerator
and denominator of the first factor, and the same volume in the numerator and denominator of the second
factor:

2000 ft3 �
�
12 in

1 ft

�3

� 1 gal

231 in3
(2.14)

Now do the arithmetic:

2000 ft3 �
�
12 in

1 ft

�3

� 1 gal

231 in3
D 14;961 gallons (2.15)

2.7 Odds and Ends

We’ll end this chapter with a few miscellaneous notes about SI units:

• In a few special cases, we customarily drop the ending vowel of a prefix when combining with a unit
that begins with a vowel: it’s megohm (not “megaohm”); kilohm (not “kiloohm”); and hectare (not
“hectoare”). In all other cases, keep both vowels (e.g. microohm, kiloare, etc.). There’s no particular
reason for this—it’s just customary.

14
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• Sometimes in electronics work the SI prefix symbol may be used in place of the decimal point. For
example, 24.9 M� may be written “24M9”. This saves space on electronic diagrams and when print-
ing values on electronic components, and also avoids problems with the decimal point being nearly
invisible when the print is tiny. This is unofficial use, and is only encountered in electronics.

• One sometimes encounters older metric units of length called the micron (�, now properly called the
micrometer, 10�6 meter) and the millimicron (m�, now properly called the nanometer, 10�9 meter).
The micron and millimicron are now obsolete.

• In computer work, the SI prefixes are often used with units of bytes, but may refer to powers of 2 that
are near the SI values. For example, the term “1 kB” may mean 1000 bytes, or it may mean 210 D 1024

bytes. Similarly, a 100 GB hard drive may have a capacity of 100;000;000;000 bytes, or it may mean
100 � 230 D 107;374;182;400 bytes. To help resolve these ambiguities, a set of binary prefixes has
been introduced (Table E-4 of Appendix E). These prefixes have not yet entirely caught on in the
computing industry, though.
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Chapter 3

Problem-Solving Strategies

Much of this course will focus on developing your ability to solve physics problems. If you enjoy solving
puzzles, you’ll find solving physics problems is similar in many ways. Here we’ll look at a few general tips
on how to approach solving problems.

• At the beginning of the problem, immediately convert the units of all the quantities you’re given to base
SI units. In other words, convert all lengths to meters, all masses to kilograms, all times to seconds,
etc.: all quantities should be in un-prefixed SI units, except for masses in kilograms. When you do
this, you’re guaranteed that the final result will also be in base SI units, and this will minimize your
problems with units. As you gain more experience in problem solving, you’ll sometimes see shortcuts
that let you get around this suggestion, but for now converting all units to base SI units is the safest
approach.

• Look at the information you’re given, and what you’re being asked to find. Then think about what
equations you know that might let you get from what you’re given to what you’re trying to find.

• Be sure you understand under what conditions each equation is valid. For example, we’ll shortly see
a set of equations that are derived by assuming constant acceleration. It would be inappropriate to use
those equations for a mass on a spring, since the acceleration of a mass under a spring force is not
constant. For each equation you’re using, you should be clear what each variable represents, and under
what conditions the equation is valid.

• As a general rule, it’s best to derive an algebraic expression for the solution to a problem first, then
substitute numbers to compute a numerical answer as the very last step. This approach has a number of
advantages: it allows you to check units in your algebraic expression, helps minimize roundoff error,
and allows you to easily repeat the calculation for different numbers if needed.

• If you’ve derived an algebraic equation, check the units of your answer. Make sure your equation has
the correct units, and doesn’t do something like add quantities with different units.

• If you’ve derived an algebraic equation, you can check that it has the proper behavior for extreme
values of the variables. For example, does the answer make sense if time t ! 1? If the equation
contains an angle, does it reduce to a sensible answer when the angle is 0ı or 90ı?

• Check your answer for reasonableness—don’t just write down whatever your calculator says. For
example, suppose you’re computing the speed of a pendulum bob in the laboratory, and find the answer
is 14;000 miles per hour. That doesn’t seem reasonable, so you should go back and check your work.
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• You can avoid rounding errors by carrying as many significant digits as possible throughout your cal-
culations; don’t round off until you get to the final result.

• Write down a reasonable number of significant digits in the final answer—don’t write down all the
digits in your calculator’s display. Nor should you round too much and use too few significant digits.
There are rules for determining the correct number of significant digits, but for most problems in this
course, 3 or 4 significant digits will be about right.

• Don’t forget to put the correct units on the final answer! You will have points deducted for forgetting
to do this.

• The best way to get good at problem solving (and to prepare for exams for this course) is practice—
practice working as many problems as you have time for. Working physics problems is a skillmuch like
learning to play a sport or musical instrument. You can’t learn by watching someone else do it—you
can only learn it by doing it yourself.

17



Chapter 4

Temperature

4.1 Thermodynamics

Thermodynamics is the study of heat, and the transfer of energy between bodies due differences in tempera-
ture.

4.2 Temperature

We have an intuitive sense of temperature from encountering it in everyday life: when a body (or the air)
has a high temperature, it “feels” hotter; when the temperature is low, it feels colder. This intuitive sense
of temperature breaks down in some situations (in a near vacuum, for example), and we will require a more
precise scientific definition.

Technically, the temperature of a body is a measure of the average kinetic energy of the particles making
up the body. Temperature therefore can be expressed in energy units, but it is more commonly expressed on
a temperature scale, as described in the following section.

4.3 Temperature Scales

Several scales for measuring temperature are in common use. For everyday civil use in the United States,
the most common temperature scale is the Fahrenheit scale, in which temperature is measured in degrees
Fahrenheit (ıF).1 On the Fahrenheit scale, water freezes at 32ıF and boils at 212ıF, and so the interval
between these two points is 180ı. A normal comfortable (slightly cold) “room temperature” is about 68ıF,
and nominal human body temperature is 98:6ıF.

Throughout much of the rest of the world, the common temperature scale in civil use is the Celsius scale,
in which temperature is measured in degrees Celsius (ıC).2 On the Celsius scale, water freezes at 0ıC and
boils at 100ıC; room temperature is 20ıC, and nominal human body temperature is 37ıC.

The Fahrenheit and Celsius scales are related by the equations

ıC D 5
9
.ıF � 32/ (4.1)

ıF D 9
5
.ıC/C 32 (4.2)

1Named for physicist Daniel Fahrenheit.
2Named for the Swedish astronomer Anders Celsius. The Celsius scale is also known as the centigrade scale.
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It is easy to show that the Fahrenheit and Celsius scales are equal at one point: �40ıF D �40ıC, which
happens to be near the freezing point of mercury.

In scientific and engineering work, one often uses absolute temperature scales, in which 0ı is set at the
lowest possible temperature, called absolute zero (described in the following section). One such absolute
temperature scale is the Rankine scale,3 in which temperature is measured in degrees Rankine (ıR). Intervals
of 1ı are the same on both the Fahrenheit and Rankine scales; the two scales differ only by the location of the
0ı point. Since absolute zero is �459:67ıF, the Fahrenheit and Rankine scales are related by

ıR Dı F C 459:67 (4.3)

On the Rankine scale, water freezes at 491:67ıR and boils at 671:67ıR; room temperature is 527:67ıR, and
nominal human body temperature is 558:27ıR.

The SI unit for temperature is an absolute temperature scale called the Kelvin scale, in which temperature
is measured in kelvins.4 Intervals of 1ı are the same on both the Celsius and Kelvin scales, and the two scales
differ only by the location of the 0ı point. Since absolute zero is �273:15ıC, the Celsius and Kelvin scales
are related by

K Dı C C 273:15 (4.4)

On the Kelvin scale, water freezes at 273.15 K and boils at 373.15 K; room temperature is 293.15 K, and
nominal body temperature is 310.15 K.

4.4 Absolute Zero

As mentioned earlier, the temperature of a body is a measure of the average energy per molecule of the body.
As the body is cooled more and more, this average energy will become less and less. Because of effects due
to quantum mechanics, this average energy cannot reach zero, but there is a minimum-energy limit beyond
which the body cannot be cooled any further. This minimum-energy temperature is called absolute zero, and
is the lowest temperature to which any body can be cooled. Absolute zero is equal to:

• 0 K

• 0 ıR

• �273:15 ıC

• �459:67 ıF

4.5 “Absolute Hot”

If absolute zero is the coldest possible temperature, it is natural to ask: is there a hottest possible temperature?
The answer is: nobody really knows.

This hypothetical highest temperature, if it exists, has been named “absolute hot.” Nobody knows whether
or not there is an “absolute hot,” but we can say that our current best theories of physics break down above
energies that correspond to the Planck temperature

TP D
s

„c5

Gk2
B

D 1:417� 1032 K; (4.5)

3Named for Scottish engineer and physicist William Rankine.
4Named for William Thompson, Lord Kelvin. Note that the Kelvin scale does not use the degree symbol ( ı ).
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or 141.7 nonillion kelvins. (Here „ is Planck’s constant divided by 2� , c is the speed of light in vacuum,
G is Newton’s gravitational constant, and kB is Boltzmann’s constant.) According to current cosmological
models, the Universe was at this temperature just 5:4 � 10�44 seconds5 after the Big Bang—the initial “ex-
plosion” in which the Universe was created. At this time, the entire Universe was only about 1:6 � 10�35

meters6 in size.

4.6 Temperature of Space

What is the temperature of (outer) space? Remember that temperature is a measure of the average energy
of the molecules that make up a body. When we speak of the temperature in a room or outdoors, we’re
referring to the temperature of the air. But space is essentially a vacuum, and it’s meaningless to talk about
the “temperature” of a vacuum—there’s nothing in the vacuum whose energy we can measure. When people
talk about the “temperature” in space, they may be talking about the temperature of the outer surface of the
Space Station, or of the outer surface of an astronaut’s space suit, or of the temperature of the soil on the
surface of the Moon, depending on the context.

There is a sense, though, in which space does have a temperature. All of space is filled with microwave
radiation, whose peak intensity is at a wavelength of about 1 mm. This radiation, which is blackbody radiation
left over from the Big Bang, corresponds to a temperature of 2.73 K, and is called the cosmic microwave
background radiation. Blackbody radiation will be discussed later.

4.7 Thermometry

Thermometry is the measurement of temperature. The most common method for measuring temperature in
everyday life is with a thermometer. A typical thermometer consists of a tube of glass with a narrow channel
inside, into which has been placed a quantity of mercury or colored alcohol. As the temperature increases,
the liquid in the channel expands (see Chapter 5), causing it to rise upward. A scale is marked on the glass
tube, calibrated on the Fahrenheit or Celsius temperature scales. Reading the top edge of the level of the
liquid against the scale gives the temperature.

Of course, this type of thermometer will not work above the boiling point of the liquid, or below its freez-
ing point (or above the melting point of the glass tube). Several other methods are available for measuring
temperature outside this range:

• A thermocouple consists of two dissimilar metals in contact with each other. When the metals are
in contact, there is a voltage produced, and this voltage is dependent on the temperature of the met-
als. My measuring the voltage across an appropriately calibrated thermocouple, one may measure the
temperature.

• A thermistor is a resistor especially designed to have a resistance that is particularly sensitive to tem-
perature. By measuring the resistance of a calibrated thermistor, one may measure the temperature.

• An optical pyrometer can be used to measure the temperature of objects that are hot enough to glow,
such as lamp filaments. In this device, one compares the color of a body with the color of a calibrated
lamp filament; when the colors match, the body and filament are at the same temperature. This allows
one to determine the temperature of the body as long (as the lamp filament is calibrated).

5This is known as the Planck time.
6This is known as the Planck length.
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Chapter 5

Thermal Expansion

5.1 Linear Expansion

Solid bodies generally expand (or sometimes contract) with increasing temperature, a phenomenon called
thermal expansion. For a one-dimensional body (such as a rod), the change in length is found to be propor-
tional to the temperature change. If the rod has an initial length L0 and has its temperature increased by an
amount �T , the rod’s length with change by an amount

�L D ˛L0�T; (5.1)

where ˛ is a constant called the coefficient of linear expansion, and depends on the material. If the length of
the rod after the expansion is L, then we can write�L D L �L0, and Eq. (5.1) can be written in the form

L D L0.1C ˛/�T: (5.2)

5.2 Surface Expansion

If a two-dimensional body (a sheet of metal, for example) of initial area A0 is subject to a temperature change
�T , then its new area A will be given by

�A D �A0�T; (5.3)

where � D 2˛ is the coefficient of surface expansion. Since �A D A� A0, we can write Eq. (5.3) as

A D A0.1C �/�T (5.4)

5.3 Volume Expansion

If a three-dimensional body (a volume of metal or liquid, for example) of initial volume V0 is subject to a
temperature change �T , then its new volume V will be given by

�V D ˇV0�T (5.5)

where ˇ D 3˛ is the coefficient of volume expansion. Since�V D V � V0, we can write Eq. (5.5) as

V D V0.1 C ˇ/�T (5.6)
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Chapter 6

Heat

6.1 Energy Units

6.2 Heat Capacity

6.3 Calorimetry

6.4 Mechanical Equivalent of Heat
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Chapter 7

Phases of Matter

7.1 Solid

7.2 Liquid

7.3 Gas

7.4 Plasma

7.5 Freezing and Melting

7.6 Vaporization and Condensation

7.7 Sublimation and Deposition

7.8 Water

7.9 Ice
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Chapter 8

Heat Transfer

8.1 Conduction

8.2 Convection

8.3 Radiation
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Chapter 9

Blackbody Radiation

9.1 Wein’s Law
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Chapter 10

Entropy
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Chapter 11

The Laws of Thermodynamics

11.1 The First Law

11.2 The Second Law

11.3 The Third Law

11.4 The “Zeroth Law”
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Chapter 12

Pressure

12.1 Units
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Chapter 13

Gas Laws

13.1 Boyle’s Law

P / 1

V
(13.1)

13.2 Gay-Lussac’s Law

P / T (13.2)

13.3 Charles’s Law

V / T (13.3)

13.4 Ideal Gas Law

Combined gas law:

PV / T (13.4)

PV D nRT (13.5)

PV D NkBT (13.6)

13.5 Van der Waals Equation
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Chapter 14

Kinetic Theory of Gases

14.1 The Equipartition Theorem

14.2 The Maxwell-Boltzmann Distribution
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Chapter 15

Heat Engines

15.1 P -V Diagrams

15.2 Isobaric Processes

15.3 Isochoric Processes

15.4 Isothermal Processes

15.5 Adiabatic Processes

15.6 Carnot Cycle

15.7 Otto Cycle
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Chapter 16

Thermodynamic Potentials

16.1 Internal Energy

16.2 Enthalpy

16.3 Gibbs Free Energy

16.4 Helmholtz Free Energy

16.5 Grand Potential

16.6 Chemical Potential
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Chapter 17

Partial Derivatives

The equations of Lagrangian and Hamiltonian mechanics are expressed in the language of partial differential
equations. We will leave the methods for solving such equations to a more advanced course, but we can
still write down the equations and explore some of their consequences. First, in order to understand these
equations, we’ll first need to understand the concept of partial derivatives.

17.1 First Partial Derivatives

You’ve already learned in a calculus course how to take the derivative of a function of one variable. For
example, if

f .x/ D 3x2 C 7x5 (17.1)

then

df

dx
D 6x C 35x4: (17.2)

But what if f is a function of more that one variable? For example, if

f .x; y/ D 5x3y5 C 4y2 � 7xy6 (17.3)

then how do we take the derivative of f ? In this case, there are two possible first derivatives: one with respect
to x, and one with respect to y. These are called partial derivatives, and are indicated using the “backward-6”
symbol @ in place of the symbol d used for ordinary derivatives.

To compute a partial derivative with respect to x, you simply treat all variables except x as constants.
Similarly, for the partial derivative with respect to y, you treat all variables except y as constants. For
example, if g.x; y/ D 3x4y7, then the partial derivative of g with respect to x is @g=@x D 12x3y7, since
both 3 and y7 are considered constants with respect to x.

As another example, the partial derivatives of Eq. (17.3) are

@f

@x
D 15x2y5 � 7y6 (17.4)

@f

@y
D 25x3y4 C 8y � 42xy5 (17.5)

Notice that in Eq. (17.4), the derivative of the term 4y2 with respect to x is 0, since 4y2 is treated as a
constant.
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17.2 Higher-Order Partial Derivatives

It is similarly possible to take higher-order partial derivatives. For a function of two variables f .x; y/, there
are three possible second derivatives:

@2f

@x2
D @

@x

�
@f

@x

�
I @2f

@x@y
D @

@x

�
@f

@y

�
I and

@2f

@y2
D @

@y

�
@f

@y

�
: (17.6)

In the second case, the order of differentiation doesn’t matter: @2f=.@x@y/ � @2f=.@y@x/. This property is
known as Clairaut’s theorem.

For example, suppose f .x; y/ is as given by Eq. (17.3). Then the second partial derivatives of f are
found by taking partial derivatives of Eqs. (17.4) and (17.5):

@2f

@x2
D 30xy5 (17.7)

@2f

@x@y
D 75x2y4 � 42y5 (17.8)

@2f

@y2
D 100x3y3 C 8 � 210xy4 (17.9)
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Chapter 18

Maxwell Relations

�
@T

@V

�
S

D �
�
@P

@S

�
V

(18.1)

�
@T

@P

�
S

D
�
@V

@S

�
P

(18.2)

�
@P

@T

�
V

D
�
@S

@V

�
T

(18.3)

�
@V

@T

�
P

D �
�
@S

@P

�
T

(18.4)
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Chapter 19

Statistical Mechanics
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Appendix A

Further Reading

General

• The Feynman Lectures on Physics (Definitive Edition; 3 vol.) by Richard P. Feynman, Robert B.
Leighton, and Matthew Sands (Addison-Wesley, Reading, Mass., 2006). This classic work is well
known to all students of physics. These lectures were presented by Nobel laureate Richard Feynman to
his physics class at the California Institute of Technology in the 1960s, and are considered a masterpiece
of physics exposition by one if its greatest teachers. (The the audio for these lectures is also available
on CD, in 20 volumes.)

• Thinking Physics (3rd ed.) by Lewis Carroll Epstein (Insight Press, San Francisco, 2009). A very nice
collection of thought-provoking physics puzzles.
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Appendix B

Greek Alphabet

Table B-1. The Greek alphabet.

Letter Name
A ˛ Alpha
B ˇ Beta
� � Gamma
� ı Delta
E " Epsilon
Z 	 Zeta
H 
 Eta
‚ � Theta
I � Iota
K � Kappa
ƒ  Lambda
M � Mu
N � Nu
„ � Xi
O o Omicron
… � Pi
P � Rho
† � Sigma
T � Tau
‡ � Upsilon
ˆ ' Phi
X � Chi
‰  Psi
� ! Omega

(Alternate forms: ° D ˇ, ² D ı, � D ", # D � , ~ D �, $ D � , % D �, & D � , � D '.)
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Appendix C

Trigonometric Identities

Basic Formulæ

sin2 � C cos2 � � 1

sec2 � � 1C tan2 �

csc2 � � 1C cot2 �

Angle Addition Formulæ

sin.˛ ˙ ˇ/ � sin ˛ cosˇ ˙ cos˛ sinˇ

cos.˛ ˙ ˇ/ � cos˛ cosˇ � sin˛ sinˇ

tan.˛ ˙ ˇ/ � tan ˛ ˙ tanˇ

1� tan ˛ tanˇ

Double-Angle Formulæ

sin 2� � 2 sin � cos �

cos 2� � cos2 � � sin2 � � 1 � 2 sin2 � � 2 cos2 � � 1

tan 2� � 2 tan �

1 � tan2 �

Half-Angle Formulæ

sin
�

2
� ˙

r
1 � cos �

2

cos
�

2
� ˙

r
1C cos �

2

tan
�

2
� sin �

1C cos �
� 1 � cos �

sin �
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Products of Sines and Cosines

sin˛ cosˇ � 1

2
Œsin.˛ C ˇ/C sin.˛ � ˇ/�

cos˛ sinˇ � 1

2
Œsin.˛ C ˇ/� sin.˛ � ˇ/�

cos˛ cosˇ � 1

2
Œcos.˛ C ˇ/C cos.˛ � ˇ/�

sin˛ sinˇ � �1
2
Œcos.˛ C ˇ/� cos.˛ � ˇ/�

Sums and Differences of Sines and Cosines

sin˛ C sinˇ � 2 sin
˛ C ˇ

2
cos

˛ � ˇ

2

sin˛ � sinˇ � 2 cos
˛ C ˇ

2
sin

˛ � ˇ
2

cos˛ C cosˇ � 2 cos
˛ C ˇ

2
cos

˛ � ˇ
2

cos˛ � cosˇ � �2 sin
˛ C ˇ

2
sin

˛ � ˇ
2

Other Formulæ

sin2 � � 1

2
.1 � cos 2�/

cos2 � � 1

2
.1 C cos 2�/

tan � � cot � � 2 cot 2�
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Appendix D

Useful Series

The first four series are valid if jxj < 1; the last three are valid for all real x.

.1C x/1=2 D 1C 1

2
x � 1

8
x2 C 1

16
x3 � 5

128
x4 C 7

256
x5 � 21

1024
x6 C 33

2048
x7 � 429

32768
x8 C � � � (D.1)

.1 � x/1=2 D 1� 1

2
x � 1

8
x2 � 1

16
x3 � 5

128
x4 � 7

256
x5 � 21

1024
x6 � 33

2048
x7 � 429

32768
x8 � � � � (D.2)

.1C x/�1=2 D 1� 1

2
xC 3

8
x2 � 5

16
x3 C 35

128
x4 � 63

256
x5 C 231

1024
x6 � 429

2048
x7 C 6435

32768
x8 � � � � (D.3)

.1�x/�1=2 D 1C 1

2
xC 3

8
x2 C 5

16
x3 C 35

128
x4 C 63

256
x5 C 231

1024
x6 C 429

2048
x7 C 6435

32768
x8 C � � � (D.4)

ex D 1C xC 1

2
x2 C 1

6
x3 C 1

24
x4 C 1

120
x5 C 1

720
x6 C 1

5040
x7 C 1

40320
x8 C 1

362880
x9 C � � � (D.5)

sinx D x � 1

6
x3 C 1

120
x5 � 1

5040
x7 C 1

362880
x9 � 1

39916800
x11 C 1

6227020800
x13 � � � � (D.6)

cos x D 1 � 1

2
x2 C 1

24
x4 � 1

720
x6 C 1

40320
x8 � 1

3628800
x10 C 1

479001600
x12 � � � � (D.7)
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Appendix E

SI Units

Table E-1. SI base units.

Name Symbol Quantity

meter m length
kilogram kg mass
second s time
ampere A electric current
kelvin K temperature
mole mol amount of substance
candela cd luminous intensity
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Table E-2. Derived SI units.

Name Symbol Definition Base Units Quantity

radian rad m / m — plane angle
steradian sr m2 / m2 — solid angle
newton N kg m s�2 kg m s�2 force
joule J N m kg m2 s�2 energy
watt W J / s kg m2 s�3 power
pascal Pa N / m2 kg m�1 s�2 pressure
hertz Hz s�1 s�1 frequency
coulomb C A s A s electric charge
volt V J / C kg m2 A�1 s�3 electric potential
ohm � V / A kg m2 A�2 s�3 electrical resistance
siemens S A / V kg�1 m�2 A2 s3 electrical conductance
farad F C / V kg�1 m�2 A2 s4 capacitance
weber Wb V s kg m2 A�1 s�2 magnetic flux
tesla T Wb / m2 kg A�1 s�2 magnetic induction
henry H Wb / A kg m2 A�2 s�2 induction
lumen lm cd sr cd sr luminous flux
lux lx lm / m2 cd sr m�2 illuminance
becquerel Bq s�1 s�1 radioactivity
gray Gy J / kg m2 s�2 absorbed dose
sievert Sv J / kg m2 s�2 dose equivalent
katal kat mol / s mol s�1 catalytic activity
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Table E-3. SI prefixes.

Prefix Symbol Definition English

yotta- Y 1024 septillion
zetta- Z 1021 sextillion
exa- E 1018 quintillion
peta- P 1015 quadrillion
tera- T 1012 trillion
giga- G 109 billion
mega- M 106 million
kilo- k 103 thousand
hecto- h 102 hundred
deka- da 101 ten
deci- d 10�1 tenth
centi- c 10�2 hundredth
milli- m 10�3 thousandth
micro- � 10�6 millionth
nano- n 10�9 billionth
pico- p 10�12 trillionth
femto- f 10�15 quadrillionth
atto- a 10�18 quintillionth
zepto- z 10�21 sextillionth
yocto- y 10�24 septillionth

Table E-4. Prefixes for computer use only.

Prefix Symbol Definition

yobi- Yi 280 D 1,208,925,819,614,629,174,706,176
zebi- Zi 270 D 1,180,591,620,717,411,303,424
exbi- Ei 260 D 1,152,921,504,606,846,976
pebi- Pi 250 D 1,125,899,906,842,624
tebi- Ti 240 D 1,099,511,627,776
gibi- Gi 230 D 1,073,741,824
mebi- Mi 220 D 1,048,576
kibi- Ki 210 D 1,024
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Appendix F

Gaussian Units

Table F-1. Gaussian base units.

Name Symbol Quantity

centimeter cm length
gram g mass
second s time
kelvin K temperature
mole mol amount of substance
candela cd luminous intensity
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Table F-2. Derived Gaussian units.

Name Symbol Definition Base Units Quantity

radian rad m / m — plane angle
steradian sr m2 / m2 — solid angle
dyne dyn g cm s�2 g cm s�2 force
erg erg dyn cm g cm2 s�2 energy
statwatt statW erg / s g cm2 s�3 power
barye ba dyn / cm2 g cm�1 s�2 pressure
galileo Gal cm / s2 cm s�2 acceleration
poise P g / (cm s) g cm�1 s�1 dynamic viscosity
stokes St cm2 / s cm2 s�1 kinematic viscosity
hertz Hz s�1 s�1 frequency
statcoulomb statC g1=2 cm3=2 s�1 electric charge
franklin Fr statC g1=2 cm3=2 s�1 electric charge
statampere statA statC / s g1=2 cm3=2 s�2 electric current
statvolt statV erg / statC g1=2 cm1=2 s�1 electric potential
statohm stat� statV / statA s cm�1 electrical resistance
statfarad statF statC / statV cm capacitance
maxwell Mx statV cm g1=2 cm3=2 s�1 magnetic flux
gauss G Mx / cm2 g1=2 cm�1=2 s�1 magnetic induction
oersted Oe statA s / cm2 g1=2 cm�1=2 s�1 magnetic intensity
gilbert Gb statA g1=2 cm3=2 s�2 magnetomotive force
unit pole pole dyn / Oe g1=2 cm3=2 s�1 magnetic pole strength
stathenry statH erg / statA2 s2 cm�1 induction
lumen lm cd sr cd sr luminous flux
phot ph lm / cm2 cd sr cm�2 illuminance
stilb sb cd / cm2 cd cm�2 luminance
lambert Lb 1=� cd / cm2 cd cm�2 luminance
kayser K 1 / cm cm�1 wave number
becquerel Bq s�1 s�1 radioactivity
katal kat mol / s mol s�1 catalytic activity
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Appendix G

Units of Physical Quantities

Table G-1. Units of physical quantities.

Quantity SI Units Gaussian Units
Absorbed dose Gy erg g�1

Acceleration m s�2 cm s�2

Amount of substance mol mol
Angle (plane) rad rad
Angle (solid) sr sr
Angular acceleration rad s�2 rad s�2

Angular momentum N m s dyn cm s
Angular velocity rad s�1 rad s�1

Area m2 cm2

Bulk modulus Pa ba
Catalytic activity kat kat
Coercivity A m�1 Oe
Crackle m s�5 cm s�5

Density kg m�3 g cm�3

Distance m cm
Dose equivalent Sv erg g�1

Elastic modulus N m�2 dyn cm�2

Electric capacitance F statF
Electric charge C statC
Electric conductance S stat��1

Electric conductivity S m�1 stat��1 cm�1

Electric current A statA
Electric dipole moment C m statC cm
Electric displacement (D) C m�2 statC cm�2

Electric elastance F�1 statF�1

Electric field (E) V m�1 statV cm�1

Electric flux V m statV cm
Electric permittivity F m�1 —
Electric polarization (P ) C m�2 statC cm�2

Electric potential V statV
Electric resistance � stat�
Electric resistivity � m stat� cm
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Table G-1 (cont’d). Units of physical quantities.

Quantity SI Units Gaussian Units
Energy J erg
Enthalpy J erg
Entropy J K�1 erg K�1

Force N dyn
Frequency Hz Hz
Heat J erg
Heat capacity J K�1 erg K�1

Illuminance lx ph
Impulse N s dyn s
Inductance H statH
Jerk m s�3 cm s�3

Jounce m s�4 cm s�4

Latent heat J kg�1 erg g�1

Length m cm
Luminance cd m�2 sb
Luminous flux lm lm
Luminous intensity cd cd
Magnetic flux Wb Mx
Magnetic induction (B) T G
Magnetic intensity (H ) A m�1 Oe
Magnetic dipole moment (B convention) A m2 pole cm
Magnetic dipole moment (H convention) Wb m pole cm
Magnetic permeability H m�1 —
Magnetic permeance H s
Magnetic pole strength (B convention) A m unit pole
Magnetic pole strength (H convention) Wb unit pole
Magnetic potential (scalar) A Oe cm
Magnetic potential (vector) T m G cm
Magnetic reluctance H�1 s�1

Magnetization (M ) A m�1 Mx cm�2

Magnetomotive force A Gb
Mass kg g
Memristance � stat�
Molality mol kg�1 mol g�1

Molarity mol m�3 mol cm�3

Moment of inertia kg m2 g cm2

Momentum N s dyn s
Pop m s�6 cm s�6

Power W statW
Pressure Pa ba
Radioactivity Bq Bq
Remanence T G
Retentivity T G
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Table G-1 (cont’d). Units of physical quantities.

Quantity SI Units Gaussian Units
Shear modulus N m�2 dyn cm�2

Snap m s�4 cm s�4

Specific heat J K�1 kg�1 erg K�1 g�1

Strain — —
Stress N m�2 dyn cm�2

Temperature K K
Tension N dyn
Time s s
Torque N m dyn cm
Velocity m s�1 cm s�1

Viscosity (dynamic) Pa s P
Viscosity (kinematic) m2 s�1 St
Volume m3 cm3

Wave number m�1 kayser
Weight N dyn
Work J erg
Young’s modulus N m�2 dyn cm�2
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Appendix H

Physical Constants

Table H-1. Fundamental physical constants (CODATA 2010).

Description Symbol Value

Speed of light (vacuum) c 2:99792458� 108 m/s
Gravitational constant G 6:67384� 10�11 m3 kg�1 s�2

Elementary charge e 1:602176565� 10�19 C
Permittivity of free space "0 8:85418781762038985 : : :� 10�12 F/m
Permeability of free space �0 4� � 10�7 N/A2

Coulomb constant (1=.4�"0/) kc 8:9875517873681764� 109 m/F
Electron mass me 9:10938291� 10�31 kg
Proton mass mp 1:672621777� 10�27 kg
Neutron mass mn 1:674927351� 10�27 kg
Atomic mass unit (amu) u 1:660538921� 10�27 kg
Planck constant h 6:62606957� 10�34 J s
Planck constant �2� „ 1:054571726� 10�34 J s
Boltzmann constant kB 1:3806488� 10�23 J/K

Table H-2. Other physical constants.

Description Symbol Value

Acceleration due to gravity at Earth surface g 9.80 m/s2

Radius of the Earth (eq.) R˚ 6378.140 km
Mass of the Earth M˚ 5:97320� 1024 kg
Earth gravity constant GM˚ 3:986005� 1014 m3 s�2

Speed of sound in air (20ıC) vsnd 343 m/s
Density of air (sea level) �air 1.29 kg/m3

Density of water �w 1 g/cm3 D 1000 kg/m3

Index of refraction of water nw 1.33
Resistivity of copper (20ıC) �Cu 1:68 � 10�8 � m
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Appendix I

Astronomical Data

Table I-1. Astronomical constants.

Description Symbol Value

Astronomical unit AU 1:49597870� 1011 m
Obliquity of ecliptic (J2000) " 23ı:4392911
Solar mass Mˇ 1:9891� 1030 kg
Solar radius Rˇ 696;000 km

Table I-2. Planetary Data.

Planet Mass (Yg) Eq. radius (km) Orbit semi-major axis (Gm)

Mercury 330:2 2439:7 57:91

Venus 4868:5 6051:8 108:21

Earth 5973:6 6378:1 149:60

Mars 641:85 3396:2 227:92

Jupiter 1;898;600 71;492 778:57

Saturn 568;460 60;268 1433:53

Uranus 86;832 25;559 2872:46

Neptune 102;430 24;764 4495:06

Pluto 12:5 1195 5906:38
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Unit Conversion Tables

Time

1 day D 24 hours D 1440 minutes D 86400 seconds
1 hour D 60 minutes D 3600 seconds
1 year D 31 557 600 seconds � � � 107 seconds

Length

1 mile D 8 furlongs D 80 chains D 320 rods D 1760 yards D 5280 feet D 1.609344 km
1 yard D 3 feet D 36 inches D 0.9144 meter
1 foot D 12 inches D 0.3048 meter
1 inch D 2.54 cm
1 nautical mile D 1852 meters D 1.15077944802354 miles
1 fathom D 6 feet
1 parsec D 3.26156376188 light-years D 206264.806245 AU D 3:08567756703� 1016 meters
1 ångström D 0.1 nm D 105 fermi D 10�10 meter

Mass

1 kilogram D 2.20462262184878 lb
1 pound D 16 oz D 0.45359237 kg
1 slug D 32.1740485564304 lb D 14.5939029372064 kg
1 short ton D 2000 lb
1 long ton D 2240 lb
1 metric ton D 1000 kg

Velocity

15 mph D 22 fps
1 mph D 0.44704 m/s
1 knot D 1.15077944802354 mph D 0.514444444444444 m/s
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Area

1 acre D 43560 ft2 D 4840 yd2 D 4046.8564224 m2

1 mile2 D 640 acres D 2.589988110336 km2

1 are D 100 m2

1 hectare D 104 m2 D 2.47105381467165 acres

Volume

1 liter D 1 dm3 D 10�3 m3 � 1 quart
1 m3 D 1000 liters
1 cm3 D 1 mL
1 ft3 D 1728 in3 D 7.48051948051948 gal D 28.316846592 liters
1 gallon D 231 in3 D 4 quarts D 8 pints D 16 cups D 3.785411784 liters
1 cup D 8 floz D 16 tablespoons D 48 teaspoons
1 tablespoon D 3 teaspoons D 4 fluidrams
1 dry gallon D 268.8025 in3 D 4.40488377086 liters
1 imperial gallon D 4.54609 liters
1 bushel D 4 pecks D 8 dry gallons

Density

1 g/cm3 D 1000 kg/m3 D 8.34540445201933 lb/gal D 1.043175556502416 lb/pint

Force

1 lbf D 4.44822161526050 newtons D 32.1740485564304 poundals
1 newton D 105 dynes

Energy

1 calorie D 4.1868 joules
1 BTU D 1055.05585262 joules
1 ft-lb D 1.35581794833140 joules
1 kW-hr D 3.6 MJ
1 eV D 1:602176565� 10�19 joules
1 joule D 107 ergs

Power

1 horsepower D 745.69987158227022 watts
1 statwatt D 1 abwatt D 1 erg/s D 10�7 watt

Angle

rad D deg � �
180

deg D rad � 180
�

1 deg D 60 arcmin D 3600 arcsec
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Temperature
ıC D (ıF�32/� 5

9
ıF D �ı

C� 9
5

� C 32

K D ıC C 273:15
ıR D ıF C 459:67

Pressure

1 atm D 101325 Pa D 1.01325 bar D 1013.25 millibar D 760 torr
D 760 mmHg D 29.9212598425197 inHg D 14.6959487755134 psi
D 2116.21662367394 lb/ft2 D 1.05810831183697 ton/ft2

D 1013250 dyne/cm2 D 1013250 barye

Electromagnetism

1 statcoulomb D 3:335640951981520� 10�10 coulomb
1 abcoulomb D 10 coulombs
1 statvolt D 299:792458 volts
1 abvolt D 10�8 volt
1 maxwell D 10�8 weber
1 gauss D 10�4 tesla
1 oersted D 250=� .D 79:5774715459477/A/m
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Appendix K

Angular Measure

K.1 Plane Angle

The most common unit of measure for plane angle is the degree ( ı ), which is 1/360 of a full circle. Therefore
a circle is 360ı, a semicircle is 180ı, and a right angle is 90ı.

A similar unit (seldom used nowadays) is a sort of “metric” angle called the grad, defined so that a right
angle is 100 grads, and so a full circle is 400 grads.

The SI unit of plane angle is the radian (rad), which is defined to be the angle that subtends an arc length
equal to the radius of the circle. By this definition, a full circle subtends an angle equal to the arc length of a
full circle (2�r ) divided by its radius r — and so a full circle is 2� radians.

Since a hemisphere is 180ı or � radians, the conversion factors are:

rad D �

180
� deg (K.1)

deg D 180

�
� rad (K.2)

Subunits of the Degree

For small angles, a degree may be subdivided into 60 minutes ( 0 ), and a minute into 60 seconds ( 00 ). Thus a
minute is 1/60 degree, and a second is 1/3600 degree.1 Angles smaller than 1 second are sometimes expressed
as milli-arcseconds (1/1000 arcsecond).2

K.2 Solid Angle

A solid angle is the three-dimensional version of a plane angle, and is subtended by the vertex of a cone. The
SI unit of solid angle is the steradian (sr), which is defined to be the solid angle that subtends an area equal
to the square of the radius of a circle. By this definition, a full sphere subtends an area equal to the area of a
sphere (4�r2) divided by the square of its radius (r2) — so a full sphere is 4� steradians, and a hemisphere
is 2� steradians.

1Sometimes these units are called the minute of arc or arcminute, and the second of arc or arcsecond to distinguish them from the
units of time that have the same name.

2In an old system (Ref. [?]), the second was further subdivided into 60 thirds ( 000 ), the third into 60 fourths ( 0000 ), etc. Under this
system, 1 milli-arcsecond is 3.6 fourths of arc. This system is no longer used, though; today the second of arc is simply subdivided into
decimals (e.g. 32:8647300 ).
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Ω

θ

Figure K.1: Relation between plane angle � and solid angle� for a right circular cone.

There is a simple relation between plane angle and solid angle for a right circular cone. If the vertex of
the cone subtends an angle � (the aperture angle of the cone), then the corresponding solid angle � is (Fig.
K.1)

� D 2�

�
1 � cos

�

2

�
: (K.3)

Another unit of solid angle is the square degree (deg2):

sq: deg: D sr �
�
180

�

�2

: (K.4)

In these units, a hemisphere is 20,626.48 deg2, and a complete sphere is 41,252.96 deg2.
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The Gas Constant
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Appendix M

Vector Arithmetic

A vector A may be written in cartesian (rectangular) form as

A D Axi C Ayj C A´k; (M.1)

where i is a unit vector (a vector of magnitude 1) in the x direction, j is a unit vector in the y direction, and
k is a unit vector in the ´ direction. Ax , Ay , and A´ are called the x, y, and ´ components (respectively) of
vector A, and are the projections of the vector onto those axes.

The magnitude (“length”) of vector A is

jAj D A D
q
A2

x C A2
y C A2

´: (M.2)

For example, if A D 3i C 5j C 2k, then jAj D A D p
32 C 52 C 22 D p

38.
In two dimensions, a vector has no k component: A D Ax i C Ayj.

Addition and Subtraction

To add two vectors, you add their components. Writing a second vector as B D Bxi C Byj C B´k, we have

A C B D .Ax C Bx/ i C .Ay C By/ j C .A´ C B´/ k: (M.3)

For example, if A D 3i C 5j C 2k and B D 2i � j C 4k, then A C B D 5i C 4j C 6k.
Subtraction of vectors is defined similarly:

A � B D .Ax � Bx/ i C .Ay � By / j C .A´ � B´/ k: (M.4)

For example, if A D 3i C 5j C 2k and B D 2i � j C 4k, then A � B D i C 6j � 2k.

Scalar Multiplication

To multiply a vector by a scalar, just multiply each component by the scalar. Thus if c is a scalar, then

cA D cAx i C cAyj C cA´k: (M.5)

For example, if A D 3i C 5j C 2k, then 7A D 21i C 35j C 14k.
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Dot Product

It is possible to multiply a vector by another vector, but there is more than one kind of multiplication between
vectors. One type of vector multiplication is called the dot product, in which a vector is multiplied by another
vector to give a scalar result. The dot product (written with a dot operator, as in A � B) is

A � B D AB cos � D AxBx C AyBy C A´B´; (M.6)

where � is the angle between vectors A and B. For example, if A D 3i C 5j C 2k and B D 2i � j C 4k, then
A � B D 6 � 5C 8 D 9.

The dot product can be used to find the angle between two vectors. To do this, we solve Eq. (M.6) for �
and find cos � D A � B=.AB/. Applying this to the previous example, we get A D p

38 and B D p
21, so

cos � D 9=.
p
38

p
21/, and thus � D 71:4ı.

An immediate consequence of Eq. (M.6) is that two vectors are perpendicular if and only if their dot
product is zero.

Cross Product

Another kind of multiplication between vectors, called the cross product, involves multiplying one vector by
another and giving another vector as a result. The cross product is written with a cross operator, as in A � B.
It is defined by

A � B D .AB sin �/ u (M.7)

D
ˇ̌̌
ˇ̌̌ i j k
Ax Ay A´

Bx By B´

ˇ̌̌
ˇ̌̌ (M.8)

D .AyB´ �A´By/ i � .AxB´ �A´Bx/ j C .AxBy �AyBx/ k; (M.9)

where again � is the angle between the vectors, and u is a unit vector pointing in a direction perpendicular
to the plane containing A and B, in a right-hand sense: if you curl the fingers of your right hand from
A into B, then the thumb of your right hand points in the direction of A � B (Fig. M.1). As an example, if
A D 3iC5jC2k and B D 2i�jC4k, then A � B D .20�.�2//i�.12�4/jC.�3�10/k D 22i�8j�13k.

Rectangular and Polar Forms

A two-dimensional vector may be written in either rectangular form A D Ax i C Ay j described earlier, or in
polar form A†� , where A is the vector magnitude, and � is the direction measured counterclockwise from
the Cx axis. To convert from polar form to rectangular form, one finds

Ax D A cos � (M.10)

Ay D A sin � (M.11)

Inverting these equations gives the expressions for converting from rectangular form to polar form:

A D
q
A2

x C A2
y (M.12)

tan � D Ay

Ax

(M.13)
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Figure M.1: The vector cross product A � B is perpendicular to the plane of A and B, and in the right-hand
sense. (Credit: “Connected Curriculum Project”, Duke University.)
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Appendix N

Matrix Properties

This appendix presents a brief summary of the properties of 2 � 2 and 3 � 3 matrices.

2�2 Matrices

Determinant

The determinant of a 2 � 2 matrix is given by the well-known formula:

det

�
a b

c d

�
D ad � bc: (N.1)

Matrix of Cofactors

The matrix of cofactors is the matrix of signed minors; for a 2 � 2 matrix, this is

cof

�
a b

c d

�
D

�
d �c

�b a

�
(N.2)

Inverse

Finally, the inverse of a matrix is the transpose of the matrix of cofactors divided by the determinant. For a
2 � 2 matrix,�

a b

c d

��1

D 1

ad � bc
�

d �b
�c a

�
(N.3)
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3�3 Matrices

Determinant

The determinant of a 3 � 3 matrix is given by:

det

0
@ a b c

d e f

g h i

1
A D a.ei � f h/� b.d i � fg/ C c.dh � eg/: (N.4)

Matrix of Cofactors

The matrix of cofactors is the matrix of signed minors; for a 3 � 3 matrix, this is

cof

0
@ a b c

d e f

g h i

1
A D

0
@ ei � f h fg � di dh � eg
ch� bi ai � cg bg � ah
bf � ce cd � af ae � bd

1
A (N.5)

Inverse

Finally, the inverse of a matrix is the transpose of the matrix of cofactors divided by the determinant. For a
3 � 3 matrix,

0
@ a b c

d e f

g h i

1
A

�1

D 1

a.ei � f h/� b.d i � fg/ C c.dh � eg/

0
@ ei � f h ch� bi bf � ce
fg � di ai � cg cd � af
dh� eg bg � ah ae � bd

1
A

(N.6)
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Appendix O

TI-83+ Calculator Programs

Programs in this appendix are written for the Texas Instruments TI-83+ graphing calculator and similar mod-
els with the Z80 processor, using the built-in TI-BASIC language. Refer to Chapter 16 of the TI-83+ Guide-
book for instructions on entering and running a program in the calculator.

O.1 Pendulum Period

Given the length L and amplitude � of a simple plane pendulum, this program finds the period T , using the
series expansion of Eq. (??) in Appendix ??.

To run the program, execute program PEND. At the prompt L=? enter the pendulum length L in meters
followed by ENTER. At the prompt �=? enter the pendulum amplitude � in degrees followed by ENTER.
The program returns the period T in seconds.

After running the program, the calculator will be set to degrees mode.

Program Listing

PROGRAM:PEND
:Degree
:Prompt L,�
:1!T
:For(N,1,34)
:T+(((2*N)!/(2ˆ(2*N)*(N!)2))2)*(sin(0.5*�))ˆ(2*N)!T
:End
:2*�*

p (L/9.8)*T!T

:Disp "T=",T

Example. Let T D 1:2 m and � D 65ı. Enter the above program, press PRGM and execute program
PEND. At the prompt L=? enter 1.2 ENTER. At the prompt �= enter 65 ENTER. The program returns
T D 2:389769497 sec.
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Appendix P

TI Voyage 200 Calculator Programs

Programs in this appendix are written for the Texas Instruments Voyage 200 graphing calculator and similar
models with the Motorola 68000 processor (TI-89 and TI-92), using the built-in TI-BASIC language. Refer
to the “Programming” chapter of the Voyage 200 Graphing Calculator manual for instructions on entering
and running a program in the calculator.

P.1 Pendulum Period

Given the length L and amplitude � of a simple plane pendulum, this program finds the period T , using the
series expansion of Eq. (??) in Appendix ??.

To run the program, execute program pend(). At the prompt l=? enter the pendulum length L in
meters followed by ENTER. At the prompt �=? enter the pendulum amplitude � in degrees followed by
ENTER. The program returns the period T in seconds.

After running the program, the calculator will be set to degrees mode.

Program Listing

:pend()
:Prgm
:setMode("Angle","Degree")
:Prompt l,�
:1!t
:For n,1,34
: t+((2*n)!/(2ˆ(2*n)*(n!)ˆ2))ˆ2*(sin(.5*�))ˆ(2*n)!t
:EndFor
:2*�*

p (l/9.8)*t!t

:Disp "T=",t
:EndPrgm

Example. Let T D 1:2 m and � D 65ı. Enter the above program, and execute program pend().
At the prompt l=? enter 1.2 ENTER. At the prompt �= enter 65 ENTER. The program returns T D
2:389769497 sec.
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Appendix Q

HP 35s / HP 15C Calculator Programs

Programs in this appendix are written for the Hewlett-Packard HP 35s and HP 15C scientific calculators, but
can be easily modified to run on other HP calculators that use HP RPN.

Q.1 Pendulum Period

Given the length L and amplitude � of a simple plane pendulum, this program finds the period T , using the
series expansion of Eq. (??) in Appendix ??.

To run the program, enter:

L ENTER � XEQ P ENTER (HP 35s)
L ENTER � f A (HP 15C)

where L is in meters and � is in degrees. The program returns the period T in seconds.
After running the program, the calculator will be set to degrees mode.

Program Listings

HP 35s HP 15C

P001 LBL P 001- 42,21,11 f LBL A
P002 DEG 002- 43 7 g DEG
P003 STO G 003- 44 .0 STO .0
P004 x<>y 004- 34 x ? y

P005 STO L 005- 44 .1 STO .1
P006 1 006- 1 1
P007 STO T 007- 44 .2 STO .2
P008 1.034 008- 1 1
P009 STO K 009- 48 .
P010 RCL K 010- 0 0
P011 INTG 011- 3 3
P012 STO N 012- 4 4
P013 2 013- 44 .3 STO .3
P014 � 014- 42,21, 0 f LBL 0
P015 ! 015- 45 .3 RCL .3
P016 2 016- 43 44 g INT
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P017 RCL N 017- 44 .4 STO .4
P018 2 018- 2 2
P019 � 019- 20 �
P020 yx 020- 42 0 f x!
P021 � 021- 2 2
P022 RCL N 022- 45 .4 RCL .4
P023 ! 023- 2 2
P024 x2 024- 20 �
P025 � 025- 14 yx

P026 x2 026- 10 �
P027 RCL G 027- 45 .4 RCL .4
P028 2 028- 42 0 f x!
P029 � 029- 43 11 g x2

P030 SIN 030- 10 �
P031 RCL N 031- 43 11 g x2

P032 2 032- 45 .0 RCL .0
P033 � 033- 2 2
P034 yx 034- 10 �
P035 � 035- 23 SIN
P036 STO+T 036- 45 .4 RCL .4
P037 ISG K 037- 2 2
P038 GTO P010 038- 20 �
P039 RCL L 039- 14 yx

P040 9.8 040- 20 �
P041 � 041- 44,40,.2 STO+.2
P042

p
x 042- 42, 6,.3 f ISG .3

P043 2 043- 22 0 GTO 0
P044 � 044- 45 .1 RCL .1
P045 � 045- 9 9
P046 � 046- 48 .
P047 RCL T 047- 8 8
P048 � 048- 10 �
P049 RTN 049- 11

p
x

050- 2 2
051- 20 �
052- 43 26 g �

053- 20 �
054- 45 .2 RCL .2
055- 20 �
056- 43 32 g RTN

Program: LN=162 CK=B742

Example. Let L D 1:2 m and � D 65ı. Enter the above program, then type:

1.2 ENTER 65 XEQ P ENTER (HP 35S)
1.2 ENTER 65 f A (HP 15C)

The program returns T D 2:3898 sec.
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Appendix R

HP 50g Calculator Programs

Programs in this appendix are written for the Hewlett-Packard HP 50g scientific calculator and other HP
calculators that use HP User RPL (e.g. the HP 48 series).

R.1 Pendulum Period

Given the length L and amplitude � of a simple plane pendulum, this program finds the period T , using the
series expansion of Eq. (??) in Appendix ??.

After entering the program, store it into variable PEND. Then to run the program, enter: L ENTER �
PEND, where L is in meters and � is in degrees. The program returns the period T in seconds.

After running the program, the calculator will be set to degrees mode.

Program Listing

	 1 ! L,�,T
	 DEG
1 34
FOR N

2 N * ! 2 2 N * ˆ / N ! SQ / SQ � 2 / SIN 2 N * ˆ * T + ’T’ STO
NEXT
L 9.8 / p 2 * � * T * !NUM 




Store the program into variable PEND.

Example. Let L D 1:2m and � D 65ı. Enter the above program, store into variable PEND, and type 1.2
ENTER 65 PEND. The program returns T D 2:3898 sec.
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Appendix S

Fundamental Physical Constants —
Extensive Listing

The following tables, published by the National Institutes of Science and Technology (NIST), give the current
best estimates of a large number of fundamental physical constants. These values were determined by the
Committee on Data for Science and Technology (CODATA) for 2010, and are a best fit of the constants to
the latest experimental results. (Source: http://physics.nist.gov/constants)
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Fundamental Physical Constants — Extensive Listing
Relative std.

Quantity Symbol Value Unit uncert. ur

UNIVERSAL
speed of light in vacuum c, c0 299 792 458 m s−1 exact
magnetic constant μ0 4π × 10−7 N A−2

= 12.566 370 614... × 10−7 N A−2 exact
electric constant 1/μ0c

2 ε0 8.854 187 817... × 10−12 F m−1 exact
characteristic impedance of vacuum μ0c Z0 376.730 313 461... Ω exact
Newtonian constant of gravitation G 6.673 84(80) × 10−11 m3 kg−1 s−2 1.2 × 10−4

G/h̄c 6.708 37(80) × 10−39 (GeV/c2)−2 1.2 × 10−4

Planck constant h 6.626 069 57(29) × 10−34 J s 4.4 × 10−8

4.135 667 516(91) × 10−15 eV s 2.2 × 10−8

h/2π h̄ 1.054 571 726(47) × 10−34 J s 4.4 × 10−8

6.582 119 28(15) × 10−16 eV s 2.2 × 10−8

h̄c 197.326 9718(44) MeV fm 2.2 × 10−8

Planck mass (h̄c/G)1/2 mP 2.176 51(13) × 10−8 kg 6.0 × 10−5

energy equivalent mPc2 1.220 932(73) × 1019 GeV 6.0 × 10−5

Planck temperature (h̄c5/G)1/2/k TP 1.416 833(85) × 1032 K 6.0 × 10−5

Planck length h̄/mPc = (h̄G/c3)1/2 lP 1.616 199(97) × 10−35 m 6.0 × 10−5

Planck time lP/c = (h̄G/c5)1/2 tP 5.391 06(32) × 10−44 s 6.0 × 10−5

ELECTROMAGNETIC
elementary charge e 1.602 176 565(35) × 10−19 C 2.2 × 10−8

e/h 2.417 989 348(53) × 1014 A J−1 2.2 × 10−8

magnetic flux quantum h/2e Φ0 2.067 833 758(46) × 10−15 Wb 2.2 × 10−8

conductance quantum 2e2/h G0 7.748 091 7346(25) × 10−5 S 3.2 × 10−10

inverse of conductance quantum G−1
0 12 906.403 7217(42) Ω 3.2 × 10−10

Josephson constant1 2e/h KJ 483 597.870(11) × 109 Hz V−1 2.2 × 10−8

von Klitzing constant2 h/e2 = μ0c/2α RK 25 812.807 4434(84) Ω 3.2 × 10−10

Bohr magneton eh̄/2me μB 927.400 968(20) × 10−26 J T−1 2.2 × 10−8

5.788 381 8066(38) × 10−5 eV T−1 6.5 × 10−10

μB/h 13.996 245 55(31) × 109 Hz T−1 2.2 × 10−8

μB/hc 46.686 4498(10) m−1 T−1 2.2 × 10−8

μB/k 0.671 713 88(61) K T−1 9.1 × 10−7

nuclear magneton eh̄/2mp μN 5.050 783 53(11) × 10−27 J T−1 2.2 × 10−8

3.152 451 2605(22) × 10−8 eV T−1 7.1 × 10−10

μN/h 7.622 593 57(17) MHz T−1 2.2 × 10−8

μN/hc 2.542 623 527(56) × 10−2 m−1 T−1 2.2 × 10−8

μN/k 3.658 2682(33) × 10−4 K T−1 9.1 × 10−7

ATOMIC AND NUCLEAR
General

fine-structure constant e2/4πε0h̄c α 7.297 352 5698(24) × 10−3 3.2 × 10−10

inverse fine-structure constant α−1 137.035 999 074(44) 3.2 × 10−10

Rydberg constant α2mec/2h R∞ 10 973 731.568 539(55) m−1 5.0 × 10−12

R∞c 3.289 841 960 364(17) × 1015 Hz 5.0 × 10−12

R∞hc 2.179 872 171(96) × 10−18 J 4.4 × 10−8

13.605 692 53(30) eV 2.2 × 10−8

Bohr radius α/4πR∞ = 4πε0h̄
2/mee

2 a0 0.529 177 210 92(17) × 10−10 m 3.2 × 10−10

Hartree energy e2/4πε0a0 = 2R∞hc = α2mec
2 Eh 4.359 744 34(19) × 10−18 J 4.4 × 10−8

27.211 385 05(60) eV 2.2 × 10−8

quantum of circulation h/2me 3.636 947 5520(24) × 10−4 m2 s−1 6.5 × 10−10
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Fundamental Physical Constants — Extensive Listing
Relative std.

Quantity Symbol Value Unit uncert. ur

h/me 7.273 895 1040(47) × 10−4 m2 s−1 6.5 × 10−10

Electroweak
Fermi coupling constant3 GF/(h̄c)3 1.166 364(5) × 10−5 GeV−2 4.3 × 10−6

weak mixing angle4 θW (on-shell scheme)
sin2 θW = s2

W ≡ 1 − (mW/mZ)2 sin2 θW 0.2223(21) 9.5 × 10−3

Electron, e−

electron mass me 9.109 382 91(40) × 10−31 kg 4.4 × 10−8

5.485 799 0946(22) × 10−4 u 4.0 × 10−10

energy equivalent mec
2 8.187 105 06(36) × 10−14 J 4.4 × 10−8

0.510 998 928(11) MeV 2.2 × 10−8

electron-muon mass ratio me/mμ 4.836 331 66(12) × 10−3 2.5 × 10−8

electron-tau mass ratio me/mτ 2.875 92(26) × 10−4 9.0 × 10−5

electron-proton mass ratio me/mp 5.446 170 2178(22) × 10−4 4.1 × 10−10

electron-neutron mass ratio me/mn 5.438 673 4461(32) × 10−4 5.8 × 10−10

electron-deuteron mass ratio me/md 2.724 437 1095(11) × 10−4 4.0 × 10−10

electron-triton mass ratio me/mt 1.819 200 0653(17) × 10−4 9.1 × 10−10

electron-helion mass ratio me/mh 1.819 543 0761(17) × 10−4

electron to alpha particle mass ratio me/mα 1.370 933 555 78(55) × 10−4 4.0 × 10−10

electron charge to mass quotient −e/me −1.758 820 088(39) × 1011 C kg−1 2.2 × 10−8

electron molar mass NAme M(e),Me 5.485 799 0946(22) × 10−7 kg mol−1 4.0 × 10−10

Compton wavelength h/mec λC 2.426 310 2389(16) × 10−12 m 6.5 × 10−10

λC/2π = αa0 = α2/4πR∞ λC 386.159 268 00(25) × 10−15 m 6.5 × 10−10

classical electron radius α2a0 re 2.817 940 3267(27) × 10−15 m 9.7 × 10−10

Thomson cross section (8π/3)r2
e σe 0.665 245 8734(13) × 10−28 m2 1.9 × 10−9

electron magnetic moment μe −928.476 430(21) × 10−26 J T−1 2.2 × 10−8

to Bohr magneton ratio μe/μB −1.001 159 652 180 76(27) 2.6 × 10−13

to nuclear magneton ratio μe/μN −1838.281 970 90(75) 4.1 × 10−10

electron magnetic moment
anomaly |μe|/μB − 1 ae 1.159 652 180 76(27) × 10−3 2.3 × 10−10

electron g-factor −2(1 + ae) ge −2.002 319 304 361 53(53) 2.6 × 10−13

electron-muon magnetic moment ratio μe/μμ 206.766 9896(52) 2.5 × 10−8

electron-proton magnetic moment ratio μe/μp −658.210 6848(54) 8.1 × 10−9

electron to shielded proton magnetic
moment ratio (H2O, sphere, 25 ◦C) μe/μ′p −658.227 5971(72) 1.1 × 10−8

electron-neutron magnetic moment ratio μe/μn 960.920 50(23) 2.4 × 10−7

electron-deuteron magnetic moment ratio μe/μd −2143.923 498(18) 8.4 × 10−9

electron to shielded helion magnetic
moment ratio (gas, sphere, 25 ◦C) μe/μ′h 864.058 257(10) 1.2 × 10−8

electron gyromagnetic ratio 2|μe|/h̄ γe 1.760 859 708(39) × 1011 s−1 T−1 2.2 × 10−8

γe/2π 28 024.952 66(62) MHz T−1 2.2 × 10−8

Muon, μ−
muon mass mμ 1.883 531 475(96) × 10−28 kg 5.1 × 10−8

0.113 428 9267(29) u 2.5 × 10−8

energy equivalent mμc
2 1.692 833 667(86) × 10−11 J 5.1 × 10−8

105.658 3715(35) MeV 3.4 × 10−8

muon-electron mass ratio mμ/me 206.768 2843(52) 2.5 × 10−8

muon-tau mass ratio mμ/mτ 5.946 49(54) × 10−2 9.0 × 10−5

muon-proton mass ratio mμ/mp 0.112 609 5272(28) 2.5 × 10−8
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Fundamental Physical Constants — Extensive Listing
Relative std.

Quantity Symbol Value Unit uncert. ur

muon-neutron mass ratio mμ/mn 0.112 454 5177(28) 2.5 × 10−8

muon molar mass NAmμ M(μ),Mμ 0.113 428 9267(29) × 10−3 kg mol−1 2.5 × 10−8

muon Compton wavelength h/mμc λC,μ 11.734 441 03(30) × 10−15 m 2.5 × 10−8

λC,μ/2π λC,μ 1.867 594 294(47) × 10−15 m 2.5 × 10−8

muon magnetic moment μμ −4.490 448 07(15) × 10−26 J T−1 3.4 × 10−8

to Bohr magneton ratio μμ/μB −4.841 970 44(12) × 10−3 2.5 × 10−8

to nuclear magneton ratio μμ/μN −8.890 596 97(22) 2.5 × 10−8

muon magnetic moment anomaly
|μμ|/(eh̄/2mμ) − 1 aμ 1.165 920 91(63) × 10−3 5.4 × 10−7

muon g-factor −2(1 + aμ) gμ −2.002 331 8418(13) 6.3 × 10−10

muon-proton magnetic moment ratio μμ/μp −3.183 345 107(84) 2.6 × 10−8

Tau, τ−
tau mass5 mτ 3.167 47(29) × 10−27 kg 9.0 × 10−5

1.907 49(17) u 9.0 × 10−5

energy equivalent mτc
2 2.846 78(26) × 10−10 J 9.0 × 10−5

1776.82(16) MeV 9.0 × 10−5

tau-electron mass ratio mτ/me 3477.15(31) 9.0 × 10−5

tau-muon mass ratio mτ/mμ 16.8167(15) 9.0 × 10−5

tau-proton mass ratio mτ/mp 1.893 72(17) 9.0 × 10−5

tau-neutron mass ratio mτ/mn 1.891 11(17) 9.0 × 10−5

tau molar mass NAmτ M(τ),Mτ 1.907 49(17) × 10−3 kg mol−1 9.0 × 10−5

tau Compton wavelength h/mτc λC,τ 0.697 787(63) × 10−15 m 9.0 × 10−5

λC,τ/2π λC,τ 0.111 056(10) × 10−15 m 9.0 × 10−5

Proton, p
proton mass mp 1.672 621 777(74) × 10−27 kg 4.4 × 10−8

1.007 276 466 812(90) u 8.9 × 10−11

energy equivalent mpc2 1.503 277 484(66) × 10−10 J 4.4 × 10−8

938.272 046(21) MeV 2.2 × 10−8

proton-electron mass ratio mp/me 1836.152 672 45(75) 4.1 × 10−10

proton-muon mass ratio mp/mμ 8.880 243 31(22) 2.5 × 10−8

proton-tau mass ratio mp/mτ 0.528 063(48) 9.0 × 10−5

proton-neutron mass ratio mp/mn 0.998 623 478 26(45) 4.5 × 10−10

proton charge to mass quotient e/mp 9.578 833 58(21) × 107 C kg−1 2.2 × 10−8

proton molar mass NAmp M (p), Mp 1.007 276 466 812(90) × 10−3 kg mol−1 8.9 × 10−11

proton Compton wavelength h/mpc λC,p 1.321 409 856 23(94) × 10−15 m 7.1 × 10−10

λC,p/2π λC,p 0.210 308 910 47(15) × 10−15 m 7.1 × 10−10

proton rms charge radius rp 0.8775(51) × 10−15 m 5.9 × 10−3

proton magnetic moment μp 1.410 606 743(33) × 10−26 J T−1 2.4 × 10−8

to Bohr magneton ratio μp/μB 1.521 032 210(12) × 10−3 8.1 × 10−9

to nuclear magneton ratio μp/μN 2.792 847 356(23) 8.2 × 10−9

proton g-factor 2μp/μN gp 5.585 694 713(46) 8.2 × 10−9

proton-neutron magnetic moment ratio μp/μn −1.459 898 06(34) 2.4 × 10−7

shielded proton magnetic moment μ′p 1.410 570 499(35) × 10−26 J T−1 2.5 × 10−8

(H2O, sphere, 25 ◦C)
to Bohr magneton ratio μ′p/μB 1.520 993 128(17) × 10−3 1.1 × 10−8

to nuclear magneton ratio μ′p/μN 2.792 775 598(30) 1.1 × 10−8

proton magnetic shielding correction
1 − μ′p/μp (H2O, sphere, 25 ◦C) σ′p 25.694(14) × 10−6 5.3 × 10−4
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Relative std.

Quantity Symbol Value Unit uncert. ur

proton gyromagnetic ratio 2μp/h̄ γp 2.675 222 005(63) × 108 s−1 T−1 2.4 × 10−8

γp/2π 42.577 4806(10) MHz T−1 2.4 × 10−8

shielded proton gyromagnetic ratio
2μ′p/h̄ (H2O, sphere, 25 ◦C) γ′p 2.675 153 268(66) × 108 s−1 T−1 2.5 × 10−8

γ′p/2π 42.576 3866(10) MHz T−1 2.5 × 10−8

Neutron, n
neutron mass mn 1.674 927 351(74) × 10−27 kg 4.4 × 10−8

1.008 664 916 00(43) u 4.2 × 10−10

energy equivalent mnc2 1.505 349 631(66) × 10−10 J 4.4 × 10−8

939.565 379(21) MeV 2.2 × 10−8

neutron-electron mass ratio mn/me 1838.683 6605(11) 5.8 × 10−10

neutron-muon mass ratio mn/mμ 8.892 484 00(22) 2.5 × 10−8

neutron-tau mass ratio mn/mτ 0.528 790(48) 9.0 × 10−5

neutron-proton mass ratio mn/mp 1.001 378 419 17(45) 4.5 × 10−10

neutron-proton mass difference mn − mp 2.305 573 92(76) × 10−30 kg 3.3 × 10−7

0.001 388 449 19(45) u 3.3 × 10−7

energy equivalent (mn − mp)c2 2.072 146 50(68) × 10−13 J 3.3 × 10−7

1.293 332 17(42) MeV 3.3 × 10−7

neutron molar mass NAmn M(n),Mn 1.008 664 916 00(43) × 10−3 kg mol−1 4.2 × 10−10

neutron Compton wavelength h/mnc λC,n 1.319 590 9068(11) × 10−15 m 8.2 × 10−10

λC,n/2π λC,n 0.210 019 415 68(17) × 10−15 m 8.2 × 10−10

neutron magnetic moment μn −0.966 236 47(23) × 10−26 J T−1 2.4 × 10−7

to Bohr magneton ratio μn/μB −1.041 875 63(25) × 10−3 2.4 × 10−7

to nuclear magneton ratio μn/μN −1.913 042 72(45) 2.4 × 10−7

neutron g-factor 2μn/μN gn −3.826 085 45(90) 2.4 × 10−7

neutron-electron magnetic moment ratio μn/μe 1.040 668 82(25) × 10−3 2.4 × 10−7

neutron-proton magnetic moment ratio μn/μp −0.684 979 34(16) 2.4 × 10−7

neutron to shielded proton magnetic
moment ratio (H2O, sphere, 25 ◦C) μn/μ′p −0.684 996 94(16) 2.4 × 10−7

neutron gyromagnetic ratio 2|μn|/h̄ γn 1.832 471 79(43) × 108 s−1 T−1 2.4 × 10−7

γn/2π 29.164 6943(69) MHz T−1 2.4 × 10−7

Deuteron, d
deuteron mass md 3.343 583 48(15) × 10−27 kg 4.4 × 10−8

2.013 553 212 712(77) u 3.8 × 10−11

energy equivalent mdc2 3.005 062 97(13) × 10−10 J 4.4 × 10−8

1875.612 859(41) MeV 2.2 × 10−8

deuteron-electron mass ratio md/me 3670.482 9652(15) 4.0 × 10−10

deuteron-proton mass ratio md/mp 1.999 007 500 97(18) 9.2 × 10−11

deuteron molar mass NAmd M(d),Md 2.013 553 212 712(77) × 10−3 kg mol−1 3.8 × 10−11

deuteron rms charge radius rd 2.1424(21) × 10−15 m 9.8 × 10−4

deuteron magnetic moment μd 0.433 073 489(10) × 10−26 J T−1 2.4 × 10−8

to Bohr magneton ratio μd/μB 0.466 975 4556(39) × 10−3 8.4 × 10−9

to nuclear magneton ratio μd/μN 0.857 438 2308(72) 8.4 × 10−9

deuteron g-factor μd/μN gd 0.857 438 2308(72) 8.4 × 10−9

deuteron-electron magnetic moment ratio μd/μe −4.664 345 537(39) × 10−4 8.4 × 10−9

deuteron-proton magnetic moment ratio μd/μp 0.307 012 2070(24) 7.7 × 10−9

deuteron-neutron magnetic moment ratio μd/μn −0.448 206 52(11) 2.4 × 10−7

Triton, t
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triton mass mt 5.007 356 30(22) × 10−27 kg 4.4 × 10−8

3.015 500 7134(25) u 8.2 × 10−10

energy equivalent mtc
2 4.500 387 41(20) × 10−10 J 4.4 × 10−8

2808.921 005(62) MeV 2.2 × 10−8

triton-electron mass ratio mt/me 5496.921 5267(50) 9.1 × 10−10

triton-proton mass ratio mt/mp 2.993 717 0308(25) 8.2 × 10−10

triton molar mass NAmt M(t),Mt 3.015 500 7134(25) × 10−3 kg mol−1 8.2 × 10−10

triton magnetic moment μt 1.504 609 447(38) × 10−26 J T−1 2.6 × 10−8

to Bohr magneton ratio μt/μB 1.622 393 657(21) × 10−3 1.3 × 10−8

to nuclear magneton ratio μt/μN 2.978 962 448(38) 1.3 × 10−8

triton g-factor 2μt/μN gt 5.957 924 896(76) 1.3 × 10−8

Helion, h
helion mass mh 5.006 412 34(22) × 10−27 kg 4.4 × 10−8

3.014 932 2468(25) u 8.3 × 10−10

energy equivalent mhc2 4.499 539 02(20) × 10−10 J 4.4 × 10−8

2808.391 482(62) MeV 2.2 × 10−8

helion-electron mass ratio mh/me 5495.885 2754(50) 9.2 × 10−10

helion-proton mass ratio mh/mp 2.993 152 6707(25) 8.2 × 10−10

helion molar mass NAmh M(h),Mh 3.014 932 2468(25) × 10−3 kg mol−1 8.3 × 10−10

helion magnetic moment μh −1.074 617 486(27) × 10−26 J T−1 2.5 × 10−8

to Bohr magneton ratio μh/μB −1.158 740 958(14) × 10−3 1.2 × 10−8

to nuclear magneton ratio μh/μN −2.127 625 306(25) 1.2 × 10−8

helion g-factor 2μh/μN gh −4.255 250 613(50) 1.2 × 10−8

shielded helion magnetic moment μ′h −1.074 553 044(27) × 10−26 J T−1 2.5 × 10−8

(gas, sphere, 25 ◦C)
to Bohr magneton ratio μ′h/μB −1.158 671 471(14) × 10−3 1.2 × 10−8

to nuclear magneton ratio μ′h/μN −2.127 497 718(25) 1.2 × 10−8

shielded helion to proton magnetic
moment ratio (gas, sphere, 25 ◦C) μ′h/μp −0.761 766 558(11) 1.4 × 10−8

shielded helion to shielded proton magnetic
moment ratio (gas/H2O, spheres, 25 ◦C) μ′h/μ′p −0.761 786 1313(33) 4.3 × 10−9

shielded helion gyromagnetic ratio
2|μ′h|/h̄ (gas, sphere, 25 ◦C) γ′h 2.037 894 659(51) × 108 s−1 T−1 2.5 × 10−8

γ′h/2π 32.434 100 84(81) MHz T−1 2.5 × 10−8

Alpha particle, α
alpha particle mass mα 6.644 656 75(29) × 10−27 kg 4.4 × 10−8

4.001 506 179 125(62) u 1.5 × 10−11

energy equivalent mαc2 5.971 919 67(26) × 10−10 J 4.4 × 10−8

3727.379 240(82) MeV 2.2 × 10−8

alpha particle to electron mass ratio mα/me 7294.299 5361(29) 4.0 × 10−10

alpha particle to proton mass ratio mα/mp 3.972 599 689 33(36) 9.0 × 10−11

alpha particle molar mass NAmα M(α),Mα 4.001 506 179 125(62) × 10−3 kg mol−1 1.5 × 10−11

PHYSICOCHEMICAL
Avogadro constant NA, L 6.022 141 29(27) × 1023 mol−1 4.4 × 10−8

atomic mass constant
mu = 1

12m(12C) = 1 u mu 1.660 538 921(73) × 10−27 kg 4.4 × 10−8

energy equivalent muc2 1.492 417 954(66) × 10−10 J 4.4 × 10−8

931.494 061(21) MeV 2.2 × 10−8
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Fundamental Physical Constants — Extensive Listing
Relative std.

Quantity Symbol Value Unit uncert. ur

Faraday constant6 NAe F 96 485.3365(21) C mol−1 2.2 × 10−8

molar Planck constant NAh 3.990 312 7176(28) × 10−10 J s mol−1 7.0 × 10−10

NAhc 0.119 626 565 779(84) J m mol−1 7.0 × 10−10

molar gas constant R 8.314 4621(75) J mol−1 K−1 9.1 × 10−7

Boltzmann constant R/NA k 1.380 6488(13) × 10−23 J K−1 9.1 × 10−7

8.617 3324(78) × 10−5 eV K−1 9.1 × 10−7

k/h 2.083 6618(19) × 1010 Hz K−1 9.1 × 10−7

k/hc 69.503 476(63) m−1 K−1 9.1 × 10−7

molar volume of ideal gas RT/p
T = 273.15 K, p = 100 kPa Vm 22.710 953(21) × 10−3 m3 mol−1 9.1 × 10−7

Loschmidt constant NA/Vm n0 2.651 6462(24) × 1025 m−3 9.1 × 10−7

molar volume of ideal gas RT/p
T = 273.15 K, p = 101.325 kPa Vm 22.413 968(20) × 10−3 m3 mol−1 9.1 × 10−7

Loschmidt constant NA/Vm n0 2.686 7805(24) × 1025 m−3 9.1 × 10−7

Sackur-Tetrode (absolute entropy) constant7
5
2 + ln[(2πmukT1/h2)3/2kT1/p0]
T1 = 1 K, p0 = 100 kPa S0/R −1.151 7078(23) 2.0 × 10−6

T1 = 1 K, p0 = 101.325 kPa −1.164 8708(23) 1.9 × 10−6

Stefan-Boltzmann constant
(π2/60)k4/h̄3c2 σ 5.670 373(21) × 10−8 W m−2 K−4 3.6 × 10−6

first radiation constant 2πhc2 c1 3.741 771 53(17) × 10−16 W m2 4.4 × 10−8

first radiation constant for spectral radiance 2hc2 c1L 1.191 042 869(53) × 10−16 W m2 sr−1 4.4 × 10−8

second radiation constant hc/k c2 1.438 7770(13) × 10−2 m K 9.1 × 10−7

Wien displacement law constants
b = λmaxT = c2/4.965 114 231... b 2.897 7721(26) × 10−3 m K 9.1 × 10−7

b′ = νmax/T = 2.821 439 372... c/c2 b′ 5.878 9254(53) × 1010 Hz K−1 9.1 × 10−7

1 See the “Adopted values” table for the conventional value adopted internationally for realizing representations of the volt using the Joseph-
son effect.
2 See the “Adopted values” table for the conventional value adopted internationally for realizing representations of the ohm using the quantum Hall
effect.
3 Value recommended by the Particle Data Group (Nakamura, et al., 2010).
4 Based on the ratio of the masses of the W and Z bosons mW/mZ recommended by the Particle Data Group (Nakamura, et al., 2010). The value for
sin2θW they recommend, which is based on a particular variant of the modified minimal subtraction (MS) scheme, is sin2θ̂W(MZ) = 0.231 22(15).
5 This and all other values involving mτ are based on the value of mτc

2 in MeV recommended by the Particle Data Group (Nakamura, et al., 2010),
but with a standard uncertainty of 0.29 MeV rather than the quoted uncertainty of −0.26 MeV, +0.29 MeV.
6 The helion, symbol h, is the nucleus of the 3He atom.
7 The numerical value of F to be used in coulometric chemical measurements is 96 485.3401(48) [5.0× 10−8] when the relevant current is mea-
sured in terms of representations of the volt and ohm based on the Josephson and quantum Hall effects and the internationally adopted conventional
values of the Josephson and von Klitzing constants KJ−90 and RK−90 given in the “Adopted values” table.
8 The entropy of an ideal monoatomic gas of relative atomic mass Ar is given by S = S0 + 3

2
R ln Ar −R ln(p/p0) + 5

2
R ln(T/K).
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Periodic Table of the Elements
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Absolute hot, 19
Absolute zero, 19
Acoustics, 6
Ampere, 10
Astronomical unit, 52
Astrophysics, 6
Atomic mass unit (amu), 10
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Electrostatic units, 12

Fahrenheit scale, 18
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Fourth (of arc), 56

Gaussian units, 12
Geophysics, 6
Grad, 11, 56

Heaviside-Lorentz units, 12

Imperial units, 8
International Prototype Kilogram (IPK), 9

Jupiter, 52

K20, 9
Kelvin, 10
Kelvin scale, 19

Mars, 52
Mathematical physics, 6
Mercury, 52
Meter, 9
Metric ton, 9
Metric units, 8
Micron, 15
Mole, 10

Natural units, 8
Neptune, 52
Newton, 10
Newton’s laws of motion, 6
Nuclear physics, 6

Obliquity of the ecliptic, 52
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Partial derivative, 33
Particle physics, 6
Physics, 6
Planck length, 20
Planck temperature, 19
Planck time, 20
Plasma physics, 6
Pluto, 52
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Pound, 12
force, 12
mass, 9, 12

Quantum mechanics, 6

Radian, 11, 56
Rankine scale, 19
Relativity, 6

general, 6
special, 6

Right-hand rule, 60

Saturn, 52
Second (of time), 10
SI units, 9
Slug, 12
Solid angle, 56
Solid-state physics, 6
Statistical mechanics, 6
Steradian, 56

Temperature, 18
absolute, 19

Thermal expansion, 21
Thermistor, 20
Thermocouple, 20
Thermodynamics, 6, 18
Thermometry, 20
Third (of arc), 56

Unit vector, 59
Uranus, 52

Vector, 59
polar form, 60
rectangular form, 60

Venus, 52

Weight, 9
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