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Foreword

After writing up class notes for General Physics I (calculus-based classical mechanics) and Introductory
Physics II (algebra-based waves, acoustics, electricity and magnetism, optics, and modern physics) for
courses at Prince George’s Community College, I realized that the notes together covered most of the ma-
jor areas of physics, with one important exception: thermodynamics. To make the set of notes complete, I
decided to write up these notes on thermodynamics to complement the other two sets of notes. I've written
them at the level of the General Physics (calculus-based) sequence.

D.G. Simpson, Ph.D.
Largo, Maryland
January 26, 2013



Chapter 1

What is Physics?

Physics is the most fundamental of the sciences. Its goal is to learn how the Universe works at the most
fundamental level—and to discover the basic laws by which it operates. Theoretical physics concentrates
on developing the theory and mathematics of these laws, while applied physics focuses attention on the
application of the principles of physics to practical problems. Experimental physics lies at the intersection
of physics and engineering; experimental physicists have the theoretical knowledge of theoretical physicists,
and they know how to build and work with scientific equipment.

Physics is divided into a number of sub-fields, and physicists are trained to have some expertise in all of

them.

This variety is what makes physics one of the most interesting of the sciences—and it makes people

with physics training very versatile in their ability to do work in many different technical fields.
The major fields of physics are:

Classical mechanics is the study the motion of bodies according to Newton’s laws of motion.

Electricity and magnetism are two closely related phenomena that are together considered a single field
of physics.

Quantum mechanics describes the peculiar motion of very small bodies (atomic sizes and smaller).
Optics is the study of light.
Acoustics is the study of sound.

Thermodynamics and statistical mechanics are closely related fields that study the nature of heat. Ther-
modynamics is the subject of these notes.

Solid-state physics is the study of solids—most often crystalline metals.
Plasma physics is the study of plasmas (ionized gases).

Atomic, nuclear, and particle physics study of the atom, the atomic nucleus, and the particles that make
up the atom.

Relativity includes Albert Einstein’s theories of special and general relativity. Special relativity de-
scribes the motion of bodies moving at very high speeds (near the speed of light), while general rela-
tivity is Einstein’s theory of gravity.

The fields of cross-disciplinary physics combine physics with other sciences. These include astrophysics
(physics of astronomy), geophysics (physics of geology), biophysics (physics of biology), chemical physics
(physics of chemistry), and mathematical physics (mathematical theories related to physics).
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Besides acquiring a knowledge of physics for its own sake, the study of physics will give you a broad tech-
nical background and set of problem-solving skills that you can apply to wide variety of other fields. Some
students of physics go on to study more advanced physics, while others find ways to apply their knowledge
of physics to such diverse subjects as mathematics, engineering, biology, medicine, and finance.



Chapter 2

Units

The phenomena of Nature have been found to obey certain physical laws; one of the primary goals of physics
research is to discover those laws. It has been known for several centuries that the laws of physics are
appropriately expressed in the language of mathematics, so physics and mathematics have enjoyed a close
connection for quite a long time.

In order to connect the physical world to the mathematical world, we need to make measurements of the
real world. In making a measurement, we compare a physical quantity with some agreed-upon standard, and
determine how many such standard units are present. For example, we have a precise definition of a unit of
length called a mile, and have determined that there are about 92,000,000 such miles between the Earth and
the Sun.

It is important that we have very precise definitions of physical units — not only for scientific use, but also
for trade and commerce. In practice, we define a few base units, and derive other units from combinations of
those base units. For example, if we define units for length and time, then we can define a unit for speed as
the length divided by time (e.g. miles/hour).

How many base units do we need to define? There is no magic number; in fact it is possible to define
a system of units using only one base unit (and this is in fact done for so-called natural units). For most
systems of units, it is convenient to define base units for length, mass, and time; a base electrical unit may
also be defined, along with a few lesser-used base units.

2.1 Systems of Units

Several different systems of units are in common use. For everyday civil use, most of the world uses metric
units. The United Kingdom uses both metric units and an imperial system. Here in the United States, U.S.
customary units are most common for everyday use.'

There are actually several “metric” systems in use. They can be broadly grouped into two categories:
those that use the meter, kilogram, and second as base units (MKS systems), and those that use the centimeter,
gram, and second as base units (CGS systems). There is only one MKS system, called ST units. We will
mostly use SI units in this course.

'In the mid-1970s the U.S. government attempted to switch the United States to the metric system, but the idea was abandoned after
strong public opposition. One remnant from that era is the two-liter bottle of soda pop.
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2.2 SI Units

SI units (which stands for Systéme International d’unités) are based on the meter as the base unit of length,
the kilogram as the base unit of mass, and the second as the base unit of time. SI units also define four
other base units (the ampere, kelvin, candela, and mole, to be described later). Any physical quantity that
can be measured can be expressed in terms of these base units or some combination of them. SI units are
summarized in Appendix E.

Length (Meter)

The SI base unit of length, the meter (m), has been re-defined more times than any other unit, due to the need
for increasing accuracy. Originally (1793) the meter was defined to be 1,/10,000,000 the distance from the
North Pole to the equator, along a line going through Paris.> Then, in 1889, the meter was re-defined to be the
distance between two lines engraved on a prototype meter bar kept in Paris. Then in 1960 it was re-defined
again: the meter was defined as the distance of 1,650,763.73 wavelengths of the orange-red emission line in
the krypton-86 atomic spectrum. Still more stringent accuracy requirements led to the the current definition
of the meter, which was implemented in 1983: the meter is now defined to be the distance light in vacuum
travels in 1/299,792,458 second. Because of this definition, the speed of light is now exactly 299,792,458
m/s.

U.S. Customary units are legally defined in terms of metric equivalents. For length, the foot (ft) is defined
to be exactly 0.3048 meter.

Mass (Kilogram)

Originally the kilogram (kg) was defined to be the mass of 1 liter (0.001 m3) of water. The need for more
accuracy required the kilogram to be re-defined to be the mass of a standard mass called the International
Prototype Kilogram (IPK, frequently designated by the Gothic letter &), which is kept in a vault at the Bureau
International des Poids et Mesures (BIPM) in Paris. The kilogram is the only base unit still defined in terms
of a prototype, rather than in terms of an experiment that can be duplicated in the laboratory.

The International Prototype Kilogram is a small cylinder of platinum-iridium alloy (90% platinum), about
the size of a golf ball. In 1884, a set of 40 duplicates of the IPK was made; each country that requested one
got one of these duplicates. The United States received two of these: the duplicate called K20 arrived here
in 1890, and has been the standard of mass for the U.S. ever since. The second copy, called K4, arrived later
that same year, and is used as a constancy check on K20. Finally, in 1996 the U.S. got a third standard called
K79; this is used for mass stability studies. These duplicates are kept at the National Institutes of Standards
and Technology (NIST) in Gaithersburg, Maryland. They are kept under very controlled conditions under
several layers of glass bell jars and are periodically cleaned. From time to time they are returned to the BIPM
in Paris for re-calibration. For reasons not entirely understood, very careful calibration measurements show
that the masses of the duplicates do not stay exactly constant. Because of this, physicists are considering
re-defining the kilogram sometime in the next few years.

Another common metric (but non-SI) unit of mass is the metric ton, which is 1000 kg (a little over 1 short
ton).

In U.S. customary units, the pound-mass (Ibm) is defined to be exactly 0.45359237 kg.

Mass vs. Weight

Mass is not the same thing as weight, so it’s important not to confuse the two. The mass of a body is a
measure of the total amount of matter it contains; the weight of a body is the gravitational force on it due to
the Earth’s gravity. At the surface of the Earth, mass m and weight W are proportional to each other:

2If you remember this original definition, then you can remember the circumference of the Earth: about 40,000,000 meters.
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W =mg, 2.1

where g is the acceleration due to the Earth’s gravity, equal to 9.80 m/s?>. Remember: mass is mass, and is
measured in kilograms; weight is a force, and is measured in force units of newtons.

Time (Second)

Originally the base SI unit of time, the second (s), was defined to be 1/60 of 1/60 of 1/24 of the length of
a day, so that 60 seconds = 1 minute, 60 minutes = 1 hour, and 24 hours = 1 day. High-precision time
measurements have shown that the Earth’s rotation rate has short-term irregularities, along with a long-term
slowing due to tidal forces. So for a more accurate definition, in 1967 the second was re-defined to be based
on a definition using atomic clocks. The second is now defined to be the time required for 9,192,631,770
oscillations of a certain type of radiation emitted from a cesium-133 atom.

Although officially the symbol for the second is “s”, you will also often see people use “sec” to avoid
confusing lowercase ““s” with the number “5”.

The Ampere, Kelvin, and Candela

For this course, most quantities will be defined entirely in terms of meters, kilograms, and seconds. There are
four other SI base units, though: the ampere (A) (the base unit of electric current); the kelvin (K) (the base
unit of temperature); the candela (cd) (the base unit of luminous intensity, or light brightness); and the mole
(mol) (the base unit of amount of substance).

Amount of Substance (Mole)

Since we may have a use for the mole in this course, let’s look at its definition in detail. The simplest way to
think of it is as the name for a number. Just as “thousand” means 1,000, “million” means 1,000,000, and “bil-
lion” means 1,000,000,000, in the same way “mole” refers to the number 602,214,129,000,000,000,000,000,
or 6.02214129 x 10%3. You could have a mole of grains of sand or a mole of Volkswagens, but most often the
mole is used to count atoms or molecules. There is a reason this number is particularly useful: since each nu-
cleon (proton and neutron) in an atomic nucleus has an average mass of 1.660538921 x 10724 grams (called
an atomic mass unit, or amu), then there are 1/(1.660538921 x 10_24), or 6.02214129 x 1023 nucleons per
gram. In other words, one mole of nucleons has a mass of 1 gram. Therefore, if A is the atomic weight of an
atom, then A moles of nucleons has a mass of A grams. But A moles of nucleons is the same as 1 mole of
atoms, so one mole of atoms has a mass (in grams) equal to the atomic weight. In other words,

grams
moles of atoms = ——— 2.2)
atomic weight
Similarly, when counting molecules,
rams
moles of molecules = g (2.3)

molecular weight

In short, the mole is useful when you need to convert between the mass of a material and the number of
atoms or molecules it contains.

It’s important to be clear about what exactly you’re counting (atoms or molecules) when using moles. It
doesn’t really make sense to talk about “a mole of oxygen”, any more than it would be to talk about “100 of
oxygen”. It’s either a “mole of oxygen atoms” or a “mole of oxygen molecules”.?

Interesting fact: there is about !, mole of stars in the observable Universe.

3Sometimes chemists will refer to a “mole of oxygen” when it’s understood whether the oxygen in question is in the atomic (O) or
molecular (O2) state.

10
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SI Derived Units

In addition to the seven base units (m, kg, s, A, K, cd, mol), there are a number of so-called SI derived units
with special names. We’ll introduce these as needed, but a summary of all of them is shown in Appendix E
(Table E-2). These are just combinations of base units that occur often enough that it’s convenient to give
them special names.

Plane Angle (Radian)

One derived SI unit that we will encounter frequently is the ST unit of plane angle. Plane angles are commonly
measured in one of two units: degrees or radians.* You’re probably familiar with degrees already: one full
circle is 360°, a semicircle is 180°, and a right angle is 90°.

The SI unit of plane angle is the radian, which is defined to be that plane angle whose arc length is equal
to its radius. This means that a full circle is 27 radians, a semicircle is 7 radians, and a right angle is /2
radians. To convert between degrees and radians, then, we have:

1
degrees = radians x — 2.4)
b4
and
radians = degrees x d (2.5)
it 180 '

The easy way to remember these formule is to think in terms of units: 180 has units of degrees and & has
units of radians, so in the first equation units of radians cancel on the right-hand side to leave degrees, and in
the second equation units of degrees cancel on the right-hand side to leave radians.

Occasionally you will see a formula that involves a “bare” angle that is not the argument of a trigonometric
function like the sine, cosine, or tangent. In such cases it is understood that the angle must be in radians. For
example, the radius of a circle r, angle 8, and arc length s are related by

s =rb, (2.6)

where it is understood that 6 is in radians.
See Appendix K for a further discussion of plane and solid angles.

SI Prefixes

It’s often convenient to define both large and small units that measure the same thing. For example, in English
units, it’s convenient to measure small lengths in inches and large lengths in miles.

In ST units, larger and smaller units are defined in a systematic way by the use of prefixes to the SI base
or derived units. For example, the base SI unit of length is the meter (m), but small lengths may also be
measured in centimeters (cm, 0.01 m), and large lengths may be measured in kilometers (km, 1000 m). Table
E-3 in Appendix E shows all the SI prefixes and the powers of 10 they represent. You should memorize the
powers of 10 for all the SI prefixes in this table.

To use the SI prefixes, simply add the prefix to the front of the name of the SI base or derived unit. The
symbol for the prefixed unit is the symbol for the prefix written in front of the symbol for the unit. For
example, kilometer (km) = 103 meter, microsecond (us) = 107¢ s. But put the prefix on the gram (g), not
the kilogram: for example, 1 microgram (pg) = 10~¢ g. For historical reasons, the kilogram is the only SI
base or derived unit with a prefix.

4A third unit implemented in many calculators is the grad: a right angle is 100 grads and a full circle is 400 grads. You may encounter
grads in some older literature, such as Laplace’s Mécanique Céleste. Almost nobody uses grads today, though.

11
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2.3 CGS Systems of Units

In some fields of physics (e.g. solid-state physics, plasma physics, and astrophysics), it has been customary to
use CGS units rather than SI units, so you may encounter them occasionally. There are several different CGS
systems in use: electrostatic, electromagnetic, Gaussian, and Heaviside-Lorentz units. These systems differ
in how they define their electric and magnetic units. Unlike SI units, none of these CGS systems defines a
base electrical unit, so electric and magnetic units are all derived units. The most common of these CGS
systems is Gaussian units, which are summarized in Appendix F.

SI prefixes are used with CGS units in the same way they’re used with SI units.

2.4 British Engineering Units

Another system of units that is common in some fields of engineering is British engineering units. In this
system, the base unit of length is the foot (ft), and the base unit of time is the second (s). There is no base
unit of mass; instead, one uses a base unit of force called the pound-force (1bf). Mass in British engineering
units is measured units of slugs, where 1 slug has a weight of 32.17404855 1bf.

A related unit of mass (not part of the British engineering system) is called the pound-mass (Ibm). At
the surface of the Earth, a mass of 1 Ibm has a weight of 1 Ibf, so sometimes the two are loosely used
interchangeably and called the pound (Ib), as we do every day when we speak of weights in pounds.

SI prefixes are not used in the British engineering system.

2.5 Units as an Error-Checking Technique

Checking units can be used as an important error-checking technique called dimensional analysis. If you
derive an equation and find that the units don’t work out properly, then you can be certain you made a
mistake somewhere. If the units are correct, it doesn’t necessarily mean your derivation is correct (since you
could be off by a factor of 2, for example), but it does give you some confidence that you at least haven’t
made a units error. So checking units doesn’t tell you for certain whether or not you’ve made a mistake, but
it does help.

Here are some basic principles to keep in mind when working with units:

1. Units on both sides of an equation must match.
2. When adding or subtracting two quantities, they must have the same units.
3. The argument for functions like sin, cos, tan, sin_l, cos~ ! tan7!, log, and exp must be dimensionless.

4. When checking units, radians and steradians can be considered dimensionless.

Sometimes it’s not clear whether or not the units match on both sides of the equation, for example when
both sides involve derived SI units. In that case, it may be useful to break all the derived units down in terms
of base SI units (m, kg, s, A, K, mol, cd). Table E-2 in Appendix E shows each of the derived SI units broken
down in terms of base SI units.

2.6 Unit Conversions
Itis very common to have to work with quantities that are given in units other than the units you’d like to work

with. Converting from one set of units to another involves a straightforward, virtually foolproof technique
that’s very simple to double-check. We’ll illustrate the method here with some examples.

12
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Appendix J gives a number of important conversion factors. More conversion factors are available from
sources such as the CRC Handbook of Chemistry and Physics.

1. Write down the unit conversion factor as a ratio, and fill in the units in the numerator and denominator
so that the units cancel out as needed.

2. Now fill in the numbers so that the numerator and denominator contain the same length, time, etc. (This
is because you want each factor to be a multiplication by 1, so that you don’t change the quantity—only
its units.)

Simple Conversions
A simple unit conversion involves only one conversion factor. The method for doing the conversion is best

illustrated with an example.

Example. Convert 7 feet to inches.
Solution. First write down the unit conversion factor as a ratio, filling in the units as needed:

(7 ft) x 2.7)

Notice that the units of feet cancel out, leaving units of inches. The next step is to fill in numbers so that the
same length is in the numerator and denominator:

12
UMXlg (2.8)
Now do the arithmetic:
12
Uﬁp«ﬂ?zgumm& 2.9)

More Complex Conversions

More complex conversions may involve more than one conversion factor. You’ll need to think about what
conversion factors you know, then put together a chain of them to get to the units you want.

Example. Convert 60 miles per hour to feet per second.
Solution. First, write down a chain of conversion factor ratios, filling in units so that they cancel out
correctly:

il fit h
60 € o LY i (2.10)
hr mile sec

Units cancel out to leave ft/sec. Now fill in the numbers, putting the same length in the numerator and
denominator in the first factor, and the same time in the numerator and denominator in the second factor:

mile 5280 ft 1 hr

60 — 2.11
b Tmile . 3600 sec @11)
Finally, do the arithmetic:
mile 5280 ft 1 hr ft
60 — =88 — 2.12
hr x 1 mile x 3600 sec sec ( )

13
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Example. Convert 250,000 furlongs per fortnight to meters per second.

Solution. We don’t know how to convert furlongs per fortnight directly to meters per second, so we’ll have
to come up with a chain of conversion factors to do the conversion. We do know how to convert: furlongs
to miles, miles to kilometers, kilometers to meters, fortnights to weeks, weeks to days, days to hours, hours
to minutes, and minutes to seconds. So we start by writing conversion factor ratios, putting units where they
need to be so that the result will have the desired target units (m/s):

furlong mile km m fortnight week day hr min

250,000 X X X X X X X X

fortnight furlong mile km week day hr min sec

If you check the units here, you’ll see that almost everything cancels out; the only units left are m/s, which is
what we want to convert to. Now fill in the numbers: we want to put either the same length or the same time
in both the numerator and denominator:

furlong 1 mile 1.609344 km 1000 m 1 fortnight 1 week 1 day 1 hr 1 min
X X X X X X X X

250,000

fortnight 8 furlongs 1 mile 1 km 2 weeks 7 days 24 hr 60 min 60 sec

= 41.58 m/s

Conversions Involving Powers

Occasionally we need to do something like convert an area or volume when we know only the length conver-
sion factor.

Example. Convert 2000 cubic feet to gallons.

Solution. Let’s think about what conversion factors we know. We know the conversion factor between
gallons and cubic inches. We don’t know the conversion factor between cubic feet and cubic inches, but we
can convert between feet and inches. The conversion factors will look like this:

N
I
2000 f® x ( m) x — &2 (2.13)

ft in3

With these units, the whole expression reduces to units of gallons. Now fill in the same length in the numerator
and denominator of the first factor, and the same volume in the numerator and denominator of the second
factor:

12in\®  1gal
2000 ft> x x 2.14
( 1 ft ) 231 in? 219
Now do the arithmetic:
12in\*>  1gal
2000 ft3 x X = 14,961 gallons 2.15
( 1 ft ) 231 in? g (215)

2.7 0Odds and Ends

We’ll end this chapter with a few miscellaneous notes about SI units:

* In a few special cases, we customarily drop the ending vowel of a prefix when combining with a unit
that begins with a vowel: it’s megohm (not “megaohm”); kilohm (not “kiloohm”); and hectare (not
“hectoare”). In all other cases, keep both vowels (e.g. microohm, kiloare, etc.). There’s no particular
reason for this—it’s just customary.

14
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* Sometimes in electronics work the SI prefix symbol may be used in place of the decimal point. For
example, 24.9 M2 may be written “24M9”. This saves space on electronic diagrams and when print-
ing values on electronic components, and also avoids problems with the decimal point being nearly
invisible when the print is tiny. This is unofficial use, and is only encountered in electronics.

* One sometimes encounters older metric units of length called the micron (i, now properly called the
micrometer, 10 meter) and the millimicron (mji, now properly called the nanometer, 10~° meter).
The micron and millimicron are now obsolete.

* In computer work, the SI prefixes are often used with units of bytes, but may refer to powers of 2 that
are near the SI values. For example, the term “1 kB” may mean 1000 bytes, or it may mean 2!° = 1024
bytes. Similarly, a 100 GB hard drive may have a capacity of 100,000,000,000 bytes, or it may mean
100 x 239 = 107,374,182,400 bytes. To help resolve these ambiguities, a set of binary prefixes has
been introduced (Table E-4 of Appendix E). These prefixes have not yet entirely caught on in the
computing industry, though.
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Chapter 3

Problem-Solving Strategies

Much of this course will focus on developing your ability to solve physics problems. If you enjoy solving
puzzles, you’ll find solving physics problems is similar in many ways. Here we’ll look at a few general tips
on how to approach solving problems.

* Atthe beginning of the problem, immediately convert the units of all the quantities you’re given to base
SI units. In other words, convert all lengths to meters, all masses to kilograms, all times to seconds,
etc.: all quantities should be in un-prefixed SI units, except for masses in kilograms. When you do
this, you’re guaranteed that the final result will also be in base SI units, and this will minimize your
problems with units. As you gain more experience in problem solving, you’ll sometimes see shortcuts
that let you get around this suggestion, but for now converting all units to base SI units is the safest
approach.

* Look at the information you’re given, and what you’re being asked to find. Then think about what
equations you know that might let you get from what you’re given to what you’re trying to find.

* Be sure you understand under what conditions each equation is valid. For example, we’ll shortly see
a set of equations that are derived by assuming constant acceleration. It would be inappropriate to use
those equations for a mass on a spring, since the acceleration of a mass under a spring force is not
constant. For each equation you’re using, you should be clear what each variable represents, and under
what conditions the equation is valid.

* As a general rule, it’s best to derive an algebraic expression for the solution to a problem first, then
substitute numbers to compute a numerical answer as the very last step. This approach has a number of
advantages: it allows you to check units in your algebraic expression, helps minimize roundoff error,
and allows you to easily repeat the calculation for different numbers if needed.

* If you’ve derived an algebraic equation, check the units of your answer. Make sure your equation has
the correct units, and doesn’t do something like add quantities with different units.

* If you’ve derived an algebraic equation, you can check that it has the proper behavior for extreme
values of the variables. For example, does the answer make sense if time t — oo? If the equation
contains an angle, does it reduce to a sensible answer when the angle is 0° or 90°?

* Check your answer for reasonableness—don’t just write down whatever your calculator says. For
example, suppose you’re computing the speed of a pendulum bob in the laboratory, and find the answer
is 14,000 miles per hour. That doesn’t seem reasonable, so you should go back and check your work.

16
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You can avoid rounding errors by carrying as many significant digits as possible throughout your cal-
culations; don’t round off until you get to the final result.

Write down a reasonable number of significant digits in the final answer—don’t write down all the
digits in your calculator’s display. Nor should you round too much and use too few significant digits.
There are rules for determining the correct number of significant digits, but for most problems in this
course, 3 or 4 significant digits will be about right.

Don’t forget to put the correct units on the final answer! You will have points deducted for forgetting
to do this.

The best way to get good at problem solving (and to prepare for exams for this course) is practice—
practice working as many problems as you have time for. Working physics problems is a skill much like
learning to play a sport or musical instrument. You can’t learn by watching someone else do it—you
can only learn it by doing it yourself.

17



Chapter 4

Temperature

4.1 Thermodynamics

Thermodynamics is the study of heat, and the transfer of energy between bodies due differences in tempera-
ture.

4.2 Temperature

We have an intuitive sense of temperature from encountering it in everyday life: when a body (or the air)
has a high temperature, it “feels” hotter; when the temperature is low, it feels colder. This intuitive sense
of temperature breaks down in some situations (in a near vacuum, for example), and we will require a more
precise scientific definition.

Technically, the temperature of a body is a measure of the average kinetic energy of the particles making
up the body. Temperature therefore can be expressed in energy units, but it is more commonly expressed on
a temperature scale, as described in the following section.

4.3 Temperature Scales

Several scales for measuring temperature are in common use. For everyday civil use in the United States,
the most common temperature scale is the Fahrenheit scale, in which temperature is measured in degrees
Fahrenheit (°F).! On the Fahrenheit scale, water freezes at 32°F and boils at 212°F, and so the interval
between these two points is 180°. A normal comfortable (slightly cold) “room temperature” is about 68°F,
and nominal human body temperature is 98.6°F.

Throughout much of the rest of the world, the common temperature scale in civil use is the Celsius scale,
in which temperature is measured in degrees Celsius (°C).2 On the Celsius scale, water freezes at 0°C and
boils at 100°C; room temperature is 20°C, and nominal human body temperature is 37°C.

The Fahrenheit and Celsius scales are related by the equations

°C = 3(°F-32) 4.1)

°F = 3(°C) + 32 (4.2)

'Named for physicist Daniel Fahrenheit.
2Named for the Swedish astronomer Anders Celsius. The Celsius scale is also known as the centigrade scale.
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It is easy to show that the Fahrenheit and Celsius scales are equal at one point: —40°F = —40°C, which
happens to be near the freezing point of mercury.

In scientific and engineering work, one often uses absolute temperature scales, in which 0° is set at the
lowest possible temperature, called absolute zero (described in the following section). One such absolute
temperature scale is the Rankine scale,’ in which temperature is measured in degrees Rankine (°R). Intervals
of 1° are the same on both the Fahrenheit and Rankine scales; the two scales differ only by the location of the
0° point. Since absolute zero is —459.67°F, the Fahrenheit and Rankine scales are related by

°R =°F + 459.67 (4.3)

On the Rankine scale, water freezes at 491.67°R and boils at 671.67°R; room temperature is 527.67°R, and
nominal human body temperature is 558.27°R.

The SI unit for temperature is an absolute temperature scale called the Kelvin scale, in which temperature
is measured in kelvins.* Intervals of 1° are the same on both the Celsius and Kelvin scales, and the two scales
differ only by the location of the 0° point. Since absolute zero is —273.15°C, the Celsius and Kelvin scales
are related by

K =°C +273.15 4.4)

On the Kelvin scale, water freezes at 273.15 K and boils at 373.15 K; room temperature is 293.15 K, and
nominal body temperature is 310.15 K.

4.4 Absolute Zero

As mentioned earlier, the temperature of a body is a measure of the average energy per molecule of the body.
As the body is cooled more and more, this average energy will become less and less. Because of effects due
to quantum mechanics, this average energy cannot reach zero, but there is a minimum-energy limit beyond
which the body cannot be cooled any further. This minimum-energy temperature is called absolute zero, and
is the lowest temperature to which any body can be cooled. Absolute zero is equal to:

* 0K
* 0°R
»+ —273.15°C
* —459.67 °F

4.5 <“Absolute Hot”

If absolute zero is the coldest possible temperature, it is natural to ask: is there a hottest possible temperature?
The answer is: nobody really knows.

This hypothetical highest temperature, if it exists, has been named “absolute hot”” Nobody knows whether
or not there is an “absolute hot,” but we can say that our current best theories of physics break down above
energies that correspond to the Planck temperature

he?

—— = 1.417 x 1032 K, 4.5
T 4.5)

Tp =

3Named for Scottish engineer and physicist William Rankine.
#Named for William Thompson, Lord Kelvin. Note that the Kelvin scale does not use the degree symbol ( ©).
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or 141.7 nonillion kelvins. (Here % is Planck’s constant divided by 27, ¢ is the speed of light in vacuum,
G is Newton’s gravitational constant, and kp is Boltzmann’s constant.) According to current cosmological
models, the Universe was at this temperature just 5.4 x 10744 seconds’ after the Big Bang—the initial “ex-
plosion” in which the Universe was created. At this time, the entire Universe was only about 1.6 x 10735
meters® in size.

4.6 Temperature of Space

What is the temperature of (outer) space? Remember that temperature is a measure of the average energy
of the molecules that make up a body. When we speak of the temperature in a room or outdoors, we’re
referring to the temperature of the air. But space is essentially a vacuum, and it’s meaningless to talk about
the “temperature” of a vacuum—there’s nothing in the vacuum whose energy we can measure. When people
talk about the “temperature” in space, they may be talking about the temperature of the outer surface of the
Space Station, or of the outer surface of an astronaut’s space suit, or of the temperature of the soil on the
surface of the Moon, depending on the context.

There is a sense, though, in which space does have a temperature. All of space is filled with microwave
radiation, whose peak intensity is at a wavelength of about 1 mm. This radiation, which is blackbody radiation
left over from the Big Bang, corresponds to a temperature of 2.73 K, and is called the cosmic microwave
background radiation. Blackbody radiation will be discussed later.

4.7 Thermometry

Thermometry is the measurement of temperature. The most common method for measuring temperature in
everyday life is with a thermometer. A typical thermometer consists of a tube of glass with a narrow channel
inside, into which has been placed a quantity of mercury or colored alcohol. As the temperature increases,
the liquid in the channel expands (see Chapter 5), causing it to rise upward. A scale is marked on the glass
tube, calibrated on the Fahrenheit or Celsius temperature scales. Reading the top edge of the level of the
liquid against the scale gives the temperature.

Of course, this type of thermometer will not work above the boiling point of the liquid, or below its freez-
ing point (or above the melting point of the glass tube). Several other methods are available for measuring
temperature outside this range:

* A thermocouple consists of two dissimilar metals in contact with each other. When the metals are
in contact, there is a voltage produced, and this voltage is dependent on the temperature of the met-
als. My measuring the voltage across an appropriately calibrated thermocouple, one may measure the
temperature.

» A thermistor is a resistor especially designed to have a resistance that is particularly sensitive to tem-
perature. By measuring the resistance of a calibrated thermistor, one may measure the temperature.

* An optical pyrometer can be used to measure the temperature of objects that are hot enough to glow,
such as lamp filaments. In this device, one compares the color of a body with the color of a calibrated
lamp filament; when the colors match, the body and filament are at the same temperature. This allows
one to determine the temperature of the body as long (as the lamp filament is calibrated).

5This is known as the Planck time.
OThis is known as the Planck length.
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Chapter 5

Thermal Expansion

5.1 Linear Expansion

Solid bodies generally expand (or sometimes contract) with increasing temperature, a phenomenon called
thermal expansion. For a one-dimensional body (such as a rod), the change in length is found to be propor-
tional to the temperature change. If the rod has an initial length Lo and has its temperature increased by an
amount AT, the rod’s length with change by an amount

AL = aLoAT, (5.1)

where « is a constant called the coefficient of linear expansion, and depends on the material. If the length of
the rod after the expansion is L, then we can write AL = L — L, and Eq. (5.1) can be written in the form

L= Lo(l + a)AT. (5.2)

5.2 Surface Expansion

If a two-dimensional body (a sheet of metal, for example) of initial area A is subject to a temperature change
AT, then its new area A will be given by

AA = yAgAT, (5.3)
where y = 2 is the coefficient of surface expansion. Since AA = A — Ay, we can write Eq. (5.3) as

A= Ao(l + y)AT (5.4)

5.3 Volume Expansion

If a three-dimensional body (a volume of metal or liquid, for example) of initial volume Vj is subject to a
temperature change AT, then its new volume V' will be given by

AV = BVoAT (5.5)
where 8 = 3« is the coefficient of volume expansion. Since AV = V — 1, we can write Eq. (5.5) as

V = Vo(1 + B)AT (5.6)
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Chapter 6

Heat

6.1 Energy Units
6.2 Heat Capacity
6.3 Calorimetry

6.4 Mechanical Equivalent of Heat

22



Chapter 7

Phases of Matter

7.1 Solid

7.2 Liquid

7.3 Gas

7.4 Plasma

7.5 Freezing and Melting

7.6 Vaporization and Condensation
7.7 Sublimation and Deposition

7.8 Water

7.9 Ice
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Chapter 8

Heat Transfer

8.1 Conduction
8.2 Convection

8.3 Radiation
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Chapter 9

Blackbody Radiation

9.1 Wein’s Law
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Chapter 10

Entropy
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Chapter 11

The Laws of Thermodynamics

11.1 The First Law
11.2 The Second Law
11.3 The Third Law
11.4 The “Zeroth Law”
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Chapter 12

Pressure

12.1 Units
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Chapter 13

Gas Laws

13.1 Boyle’s Law

1
P x —
%4

13.2 Gay-Lussac’s Law
PoT

13.3 Charles’s Law
VT

13.4 Ideal Gas Law

Combined gas law:

PV xT
PV =nRT
PV = NkgT

13.5 Van der Waals Equation
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Chapter 14

Kinetic Theory of Gases

14.1 The Equipartition Theorem

14.2 The Maxwell-Boltzmann Distribution
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Chapter 15

Heat Engines

15.1
15.2
15.3
15.4
15.5
15.6
15.7

P -V Diagrams
Isobaric Processes
Isochoric Processes
Isothermal Processes
Adiabatic Processes
Carnot Cycle

Otto Cycle
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Chapter 16

Thermodynamic Potentials

16.1
16.2
16.3
16.4
16.5
16.6

Internal Energy
Enthalpy

Gibbs Free Energy
Helmbholtz Free Energy
Grand Potential

Chemical Potential
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Chapter 17

Partial Derivatives

The equations of Lagrangian and Hamiltonian mechanics are expressed in the language of partial differential
equations. We will leave the methods for solving such equations to a more advanced course, but we can
still write down the equations and explore some of their consequences. First, in order to understand these
equations, we’ll first need to understand the concept of partial derivatives.

17.1 First Partial Derivatives

You’ve already learned in a calculus course how to take the derivative of a function of one variable. For
example, if

f(x) =3x% +7x° (17.1)
then

a _ 6x + 35x*. (17.2)

dx

But what if f is a function of more that one variable? For example, if
fx.y) =5x3y% +dy? —Txy° (17.3)

then how do we take the derivative of f'? In this case, there are rwo possible first derivatives: one with respect
to x, and one withrespect to y. These are called partial derivatives, and are indicated using the “backward-6”
symbol 9 in place of the symbol d used for ordinary derivatives.

To compute a partial derivative with respect to x, you simply treat all variables except x as constants.
Similarly, for the partial derivative with respect to y, you treat all variables except y as constants. For
example, if g(x, y) = 3x*y7, then the partial derivative of g with respect to x is dg/dx = 12x3y7, since
both 3 and y7 are considered constants with respect to x.

As another example, the partial derivatives of Eq. (17.3) are

d

of _ 1525 76 (17.4)
ox

a

% =25x3y* + 8y — 42x)° (17.5)

Notice that in Eq. (17.4), the derivative of the term 4y2 with respect to x is 0, since 4y? is treated as a
constant.

33



Prince George’s Community College Thermodynamics D.G. Simpson

17.2 Higher-Order Partial Derivatives

It is similarly possible to take higher-order partial derivatives. For a function of two variables f(x, y), there
are three possible second derivatives:

02 f a (of 0% f a (of 0% f d (of
— =17 =—\=); and — ==\ (17.6)
0x2  dx \ dx dxdy  dx \ dy dyz  dy \ dy

In the second case, the order of differentiation doesn’t matter: 92 f/(dx0dy) = 3% f/(dydx). This property is
known as Clairaut’s theorem.

For example, suppose f(x, y) is as given by Eq. (17.3). Then the second partial derivatives of f are
found by taking partial derivatives of Eqs. (17.4) and (17.5):

02 f 5
Pl 30xy 7.7
2
T _ 7502y _ 42y (17.8)
dxdy
?’f 3,3 4
—= = 100x"y> + 8 — 210xy (17.9)
ay?
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Chapter 18

Maxwell Relations
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Chapter 19

Statistical Mechanics
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Appendix A

Further Reading

General

» The Feynman Lectures on Physics (Definitive Edition; 3 vol.) by Richard P. Feynman, Robert B.
Leighton, and Matthew Sands (Addison-Wesley, Reading, Mass., 2006). This classic work is well
known to all students of physics. These lectures were presented by Nobel laureate Richard Feynman to
his physics class at the California Institute of Technology in the 1960s, and are considered a masterpiece
of physics exposition by one if its greatest teachers. (The the audio for these lectures is also available
on CD, in 20 volumes.)

* Thinking Physics (3rd ed.) by Lewis Carroll Epstein (Insight Press, San Francisco, 2009). A very nice
collection of thought-provoking physics puzzles.
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Appendix B

Greek Alphabet

Table B-1. The Greek alphabet.

Letter Name

Aa  Alpha
B Beta
I'y Gamma
A§  Delta
Ee Epsilon
7t Zeta
Hn Eta

® 6  Theta
I Iota
K«  Kappa
A A Lambda

Mup Mu

Nv Nu

EE Xi

Oo  Omicron

IMr Pi

Pp Rho
Yo  Sigma
Tt Tau

Y v  Upsilon
®¢ Phi

Xy Chi

Wy Psi

Qw Omega

(Alternate forms: 6 = 8,0 =6, e =, =0, x =k, w =m,0=p, ¢ =0,¢ = ¢.)
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Appendix C

Trigonometric Identities

Basic Formula

sin?@ +cos?26 =1
sec20 =1+ tan® 0

csc20 =14 cot?6

Angle Addition Formulz

sin(e + B) = sina cos B £ cosa sin B
cos(a + B) = cosacos B F sinasin

tan o £ tan

t + B) =
an(a = ) 1 Ftanatan 8

Double-Angle Formula

sin26 = 2sin 6 cos 0

c0s20 = cos?f —sin?0 =1—2sin’60 = 2cos? 6 — 1

2tan 6
tan29=m
Half-Angle Formulz

sin 0 = 4, /L= cosf

2 2
cosgzj:,/ilecosg

2 2
tng= sin 6 _ 1 —cosf
my = 1+cosf ~ sinf
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Products of Sines and Cosines

sina cos f = % [sin(e + B) + sin(a — B)]
cosa sinf = % [sin(e + B) — sin(a — B)]
cosa cosff = % [cos(a + B) + cos(a — B)]
sina sinff = —% [cos(a + B) — cos(a — B)]

Sums and Differences of Sines and Cosines

sinrszLsin,BEZSinth cosa_'B
2 2
sino — sin 8 52cosa+’3 sina_'B
2 2
o o —
cosa + cos B = 2cos +'Bcos P
2 2
o o
cosa —cos f = —2sin ;L'Bsin 2’3

Other Formula

1
sin 0 = 3 (1 —cos26)

1
cos? f = 3 (1 + cos 20)

tanf = cotf — 2 cot 20
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Appendix D

Useful Series

The first four series are valid if | x| < 1; the last three are valid for all real x.

11 1 5 7 21 33 429
1 1/2:1 Ty 42 W37 4 _ 5 6 7_ 8
(1+x) T T T 6" T8 256t T 10w o048t T 37est T

11 1 5 7 21 33 429
1— 1/2:1__ 2 -3 - 4 " 5 6 7_ 8
(I =x) 2778 T16Y T 128" T 2567 T 1024F T 2048 T 32768

Gam 2o topde 52,35 4 0 5 21, 429, 6435

_ 8 _
2 TS T 16" T1st 236 1024t T 2048" T 327687

1 3 5 35 63 231 429 6435
(1—X)_1/2: 1+—X+—X2+—X3+—X4+—XS+ 6 7 8

2T e Tt T 236 102t T20a8t Taa7est T

1 1

7+ X 1
40320

X
362880

1, 1 1 1 1
e =14x+-x+-x>+—x*+ —x"+ —x+ 4+

2% T8 Tt Tt T720" T 040"

sinxzx—lx3+ix5— ! x7 + L o1 x4 ! 13
6 120 5040 362880 39916800 6227020800

cosx=1—1x2+ix4—ix6+ ! X8 — ! x10+;x12—
2 24 720 40320 3628800 479001600
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Appendix E

SI Units

Table E-1. SI base units.

Name Symbol Quantity
meter m length
kilogram kg mass
second S time
ampere A electric current
kelvin K temperature
mole mol amount of substance
candela cd luminous intensity
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Table E-2. Derived SI units.

Name Symbol  Definition Base Units Quantity
radian rad m/m — plane angle
steradian st m?/m? — solid angle
newton N kgms™2 kgms? force
joule J N m kg m? s2 energy
watt W I/s kg m? s> power
pascal Pa N /m? kgm™! 72 pressure
hertz Hz st s! frequency
coulomb C As As electric charge
volt \% J/C kgm? A=!s73  electric potential
ohm Q V/A kgm? A=2s73  electrical resistance
siemens S AV kg7' m™2 A% s3 electrical conductance
farad F C/V kg7! m™2 A% s*  capacitance
weber Wb Vs kgm? A~!'s72  magnetic flux
tesla T Wb/m?  kgA~ls? magnetic induction
henry H Wb/ A kgm? A~2572  induction
lumen Im cd sr cd sr luminous flux
lux Ix Im / m? cd st m™2 illuminance
becquerel Bq s s radioactivity
gray Gy J/kg m? s—2 absorbed dose
sievert Sv J/kg m? 52 dose equivalent
katal kat mol / s mol s~ catalytic activity
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Table E-3. SI prefixes.

Prefix Symbol Definition English

yotta- Y 1024 septillion
zetta- Z 102! sextillion
exa- E 108 quintillion
peta- P 10%° quadrillion
tera- T 1012 trillion
giga- G 10° billion
mega- M 106 million
kilo- k 103 thousand
hecto- h 102 hundred
deka- da 10! ten

deci- d 107! tenth

centi- c 1072 hundredth
milli- m 1073 thousandth
micro- 78 1076 millionth
nano- n 107° billionth
pico- p 10712 trillionth
femto- f 10715 quadrillionth
atto- a 10718 quintillionth
zepto- z 10721 sextillionth
yocto- y 10724 septillionth

Table E-4. Prefixes for computer use only.

Prefix

Symbol Definition

yobi-
zebi-
exbi-
pebi-
tebi-
gibi-
mebi-
kibi-

Yi 280 =1,208,925,819,614,629,174,706,176
Zi 270 =1,180,591,620,717,411,303,424

Ei 200 = 1,152,921,504,606,846,976

Pi 250 =1,125,899,906,842,624

Ti 240 =1,099,511,627,776

Gi 230 =1,073,741,824

Mi 220 = 1,048,576

Ki 2100 =1,024
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Appendix F

Gaussian Units

Table F-1. Gaussian base units.

Name Symbol Quantity
centimeter cm length
gram g mass
second S time
kelvin K temperature
mole mol amount of substance
candela cd luminous intensity
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Table F-2. Derived Gaussian units.

Name Symbol Definition Base Units Quantity
radian rad m/m — plane angle
steradian st m? / m? — solid angle
dyne dyn gcms™? gcms—? force
erg erg dyn cm gcm? 572 energy
statwatt statW  erg/s gcm? 573 power
barye ba dyn / cm? gem™!s72 pressure
galileo Gal cm/s? cm s—2 acceleration
poise P g/(cms) gem~!s7! dynamic viscosity
stokes St cm? /s cm? 57! kinematic viscosity
hertz Hz st s! frequency
statcoulomb  statC g'/2em32 571 electric charge
franklin Fr statC g!/2em32 571 electric charge
statampere statA  statC/s g'/2em32 572 electric current
statvolt statV  erg/ statC g!/2em'/2 571 electric potential
statohm statQ  statV/statA  scm™! electrical resistance
statfarad statF statC /statV  cm capacitance
maxwell Mx statV cm g/2em?2 571 magnetic flux
gauss G Mx / cm? g/2em™Y/2s71 magnetic induction
oersted Oe statA s /cm?  g!/2em™/2 57! magnetic intensity
gilbert Gb statA g/2cm32 572 magnetomotive force
unit pole pole  dyn/Oe g!/2em32 571 magnetic pole strength
stathenry statH  erg/statA>  s?>cm™! induction
lumen Im cd sr cd sr luminous flux
phot ph Im / cm? cd srecm™2 illuminance
stilb sb cd / cm? cd cm™2 luminance
lambert Lb 1/med/cm?  cdem™2 luminance
kayser K 1/cm cm™! wave number
becquerel Bq s s radioactivity
katal kat mol / s mol s~ catalytic activity
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Appendix G

Units of Physical Quantities

Table G-1. Units of physical quantities.

Quantity SI Units  Gaussian Units
Absorbed dose Gy erg g~ !
Acceleration m s™2 cm s—2
Amount of substance mol mol
Angle (plane) rad rad
Angle (solid) sr Sr
Angular acceleration rad s—2 rad s—2
Angular momentum Nms dyncm s
Angular velocity rad s—! rad s~
Area m? cm?
Bulk modulus Pa ba
Catalytic activity kat kat
Coercivity Am™! Oe
Crackle ms—> cm s~
Density kg m~—3 gcm™3
Distance m cm
Dose equivalent Sv erg g~ !
Elastic modulus N m™2 dyn cm™2
Electric capacitance F statF
Electric charge C statC
Electric conductance S statQ !
Electric conductivity Sm~!  statQ!cm™!
Electric current A statA
Electric dipole moment Cm statC cm
Electric displacement (D)  C m™2 statC cm™2
Electric elastance F~! statF~!
Electric field (E) Vm! statV cm™!
Electric flux Vm statV cm
Electric permittivity Fm™! —
Electric polarization (P) Cm™2 statC cm ™2
Electric potential v statV
Electric resistance Q statQ2
Electric resistivity Qm stat2 cm
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Table G-1 (cont’d). Units of physical quantities.

Quantity SI Units  Gaussian Units
Energy J erg
Enthalpy J erg
Entropy JK! erg K7!
Force N dyn
Frequency Hz Hz
Heat J erg
Heat capacity JK! erg K1
Illuminance Ix ph
Impulse Ns dyns
Inductance H statH
Jerk ms—3 cms3
Jounce m s cm s
Latent heat Jkg™! erg g~ !
Length m cm
Luminance cd m™2 sb
Luminous flux Im Im
Luminous intensity cd cd
Magnetic flux Wb Mx
Magnetic induction (B) T G
Magnetic intensity (H) Am™! Oe
Magnetic dipole moment (B convention) A m? pole cm
Magnetic dipole moment (H convention) Wb m pole cm
Magnetic permeability Hm™! —
Magnetic permeance H S
Magnetic pole strength (B convention) Am unit pole
Magnetic pole strength (H convention) Wb unit pole
Magnetic potential (scalar) A Oe cm
Magnetic potential (vector) Tm Gcm
Magnetic reluctance H™! s
Magnetization (M) Am™! Mx cm™—2
Magnetomotive force A Gb
Mass kg g
Memristance Q stat$2
Molality mol kg~ ! mol g~!
Molarity mol m~3 mol cm™3
Moment of inertia kg m? g cm?
Momentum Ns dyns
Pop ms© cm s~©
Power \Y statW
Pressure Pa ba
Radioactivity Bq Bq
Remanence T G
Retentivity T G
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Table G-1 (cont’d). Units of physical quantities.

Quantity SI Units Gaussian Units
Shear modulus N m—2 dyn cm™2
Snap ms™4 cms™4
Specific heat JKtkg!  ergKlg™!
Strain — —
Stress N m—2 dyn cm™2
Temperature K K
Tension N dyn
Time S S
Torque Nm dyn cm
Velocity ms~! cms™!
Viscosity (dynamic) Pas P
Viscosity (kinematic) m?s~! St
Volume m3 cm?
Wave number m! kayser
Weight N dyn
Work J erg
Young’s modulus N m—2 dyn cm™2
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Appendix H

Physical Constants

Table H-1. Fundamental physical constants (CODATA 2010).

Description Symbol Value
Speed of light (vacuum) c 2.99792458 x 108 m/s
Gravitational constant G 6.67384 x 10711 m3 kg=1 s72
Elementary charge e 1.602176565 x 1071 C
Permittivity of free space £0 8.85418781762038985... x 10712 F/m
Permeability of free space o 4 x 1077 N/A?
Coulomb constant (1/(4megp)) ke 8.9875517873681764 x 10° m/F
Electron mass Me 9.10938291 x 10731 kg
Proton mass mp 1.672621777 x 10727 kg
Neutron mass My 1.674927351 x 10727 kg
Atomic mass unit (amu) u 1.660538921 x 10727 kg
Planck constant h 6.62606957 x 1073* J s
Planck constant 25 h 1.054571726 x 10734 J s
Boltzmann constant kg 1.3806488 x 10~23 J/K

Table H-2. Other physical constants.

Description Symbol Value
Acceleration due to gravity at Earth surface g 9.80 m/s?
Radius of the Earth (eq.) Rg 6378.140 km
Mass of the Earth Mg 597320 x 10%* kg
Earth gravity constant GMg  3.986005 x 10'* m3 s~2
Speed of sound in air (20°C) Vend 343 m/s
Density of air (sea level) Lair 1.29 kg/m3
Density of water Pw 1 g/lem?® = 1000 kg/m?
Index of refraction of water Ny 1.33
Resistivity of copper (20°C) PCu 1.68 x 1078 Qm

51



Appendix I

Astronomical Data

Table I-1. Astronomical constants.

Description Symbol Value
Astronomical unit AU 1.49597870 x 10! m
Obliquity of ecliptic (J2000) & 23°%4392911
Solar mass Mg 1.9891 x 103% kg
Solar radius Ro 696,000 km

Table I-2. Planetary Data.

Planet  Mass (Yg) Eq.radius (km) Orbit semi-major axis (Gm)
Mercury 330.2 2439.7 57.91
Venus 4868.5 6051.8 108.21
Earth 5973.6 6378.1 149.60
Mars 641.85 3396.2 227.92
Jupiter 1,898,600 71,492 778.57
Saturn 568,460 60,268 1433.53
Uranus 86,832 25,559 2872.46
Neptune 102,430 24,764 4495.06
Pluto 12.5 1195 5906.38
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Unit Conversion Tables

Time

1 day = 24 hours = 1440 minutes = 86400 seconds
1 hour = 60 minutes = 3600 seconds
1 year = 31557600 seconds ~ 7 x 107 seconds

Length

1 mile = 8 furlongs = 80 chains = 320 rods = 1760 yards = 5280 feet = 1.609344 km

1 yard = 3 feet = 36 inches = 0.9144 meter

1 foot = 12 inches = 0.3048 meter

1 inch = 2.54 cm

1 nautical mile = 1852 meters = 1.15077944802354 miles

1 fathom = 6 feet

1 parsec = 3.26156376188 light-years = 206264.806245 AU = 3.08567756703 x 10'® meters
1 dngstrom = 0.1 nm = 10° fermi = 1071° meter

Mass

1 kilogram = 2.20462262184878 1b

1 pound = 16 oz = 0.45359237 kg

1 slug = 32.1740485564304 1b = 14.5939029372064 kg
1 short ton = 2000 Ib

1 long ton = 2240 1b

1 metric ton = 1000 kg

Velocity

15 mph = 22 {ps
1 mph = 0.44704 m/s
1 knot = 1.15077944802354 mph = 0.514444444444444 m/s
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Area

1 acre = 43560 ft> = 4840 yd? = 4046.8564224 m?
1 mile? = 640 acres = 2.589988110336 km?

1 are = 100 m?

1 hectare = 10* m? = 2.47105381467165 acres

Volume

1 liter = 1 dm?® = 1073 m?® ~ 1 quart

1 m3 = 1000 liters

lem3 =1 mL

1 ft3 = 1728 in3 = 7.48051948051948 gal = 28.316846592 liters

1 gallon = 231 in3 = 4 quarts = 8 pints = 16 cups = 3.785411784 liters
1 cup = 8 floz = 16 tablespoons = 48 teaspoons

1 tablespoon = 3 teaspoons = 4 fluidrams

1 dry gallon = 268.8025 in3 = 4.40488377086 liters

1 imperial gallon = 4.54609 liters

1 bushel = 4 pecks = 8 dry gallons

Density
1 g/lem?® = 1000 kg/m> = 8.34540445201933 Ib/gal = 1.043175556502416 Ib/pint

Force

1 Ibf = 4.44822161526050 newtons = 32.1740485564304 poundals
1 newton = 10° dynes

Energy

1 calorie = 4.1868 joules

1 BTU = 1055.05585262 joules

1 ft-1Ib = 1.35581794833140 joules
1 kW-hr = 3.6 MJ

1 eV = 1.602176565 x 10719 joules
1 joule = 107 ergs

Power

1 horsepower = 745.69987158227022 watts
1 statwatt = 1 abwatt = 1 erg/s = 107 watt

Angle
rad = deg X {45 deg = rad x 182
1 deg = 60 arcmin = 3600 arcsec
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Temperature

°C = (°F-32) x 3 °F = ("Cx2) + 32
K =°C + 273.15
°R = °F + 459.67

Pressure

1 atm = 101325 Pa = 1.01325 bar = 1013.25 millibar = 760 torr
= 760 mmHg = 29.9212598425197 inHg = 14.6959487755134 psi
= 2116.21662367394 Ib/ft?> = 1.05810831183697 ton/ft>
= 1013250 dyne/cm? = 1013250 barye

Electromagnetism

1 statcoulomb = 3.335640951981520 x 10~1° coulomb
1 abcoulomb = 10 coulombs

1 statvolt = 299.792458 volts

1 abvolt = 1078 volt

1 maxwell = 10~® weber

1 gauss = 107 tesla

1 oersted = 250/ 7 (= 79.5774715459477) A/m
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Appendix K

Angular Measure

K.1 Plane Angle

The most common unit of measure for plane angle is the degree ( ° ), which is 1/360 of a full circle. Therefore
a circle is 360°, a semicircle is 180°, and a right angle is 90°.

A similar unit (seldom used nowadays) is a sort of “metric” angle called the grad, defined so that a right
angle is 100 grads, and so a full circle is 400 grads.

The SI unit of plane angle is the radian (rad), which is defined to be the angle that subtends an arc length
equal to the radius of the circle. By this definition, a full circle subtends an angle equal to the arc length of a
full circle (2rrr) divided by its radius r — and so a full circle is 27 radians.

Since a hemisphere is 180° or 7 radians, the conversion factors are:

T
d=—xd K.1
ra 130 X deg (K.1)
180
deg = — xrad (K.2)
T
Subunits of the Degree

For small angles, a degree may be subdivided into 60 minutes ('), and a minute into 60 seconds (" ). Thus a
minute is 1/60 degree, and a second is 1/3600 degree.! Angles smaller than 1 second are sometimes expressed
as milli-arcseconds (1/1000 arcsecond).?

K.2 Solid Angle

A solid angle is the three-dimensional version of a plane angle, and is subtended by the vertex of a cone. The
SI unit of solid angle is the steradian (sr), which is defined to be the solid angle that subtends an area equal
to the square of the radius of a circle. By this definition, a full sphere subtends an area equal to the area of a
sphere (4772) divided by the square of its radius (r2) — so a full sphere is 47 steradians, and a hemisphere
is 27 steradians.

'Sometimes these units are called the minute of arc or arcminute, and the second of arc or arcsecond to distinguish them from the
units of time that have the same name.

2In an old system (Ref. [?]), the second was further subdivided into 60 thirds ("), the third into 60 fourths (””"), etc. Under this
system, 1 milli-arcsecond is 3.6 fourths of arc. This system is no longer used, though; today the second of arc is simply subdivided into
decimals (e.g. 32.86473").
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Figure K.1: Relation between plane angle 6 and solid angle €2 for a right circular cone.

There is a simple relation between plane angle and solid angle for a right circular cone. If the vertex of
the cone subtends an angle 0 (the aperture angle of the cone), then the corresponding solid angle 2 is (Fig.
K.1)

Q=2r (1 — cos g) . (K.3)

Another unit of solid angle is the square degree (deg?):

180\?
sq. deg. = sr x (7) . (K.4)

In these units, a hemisphere is 20,626.48 deg?, and a complete sphere is 41,252.96 deg?.
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The Gas Constant
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Appendix M

Vector Arithmetic

A vector A may be written in cartesian (rectangular) form as
A= Ai+ A)j+ Ak, M.1)

where i is a unit vector (a vector of magnitude 1) in the x direction, j is a unit vector in the y direction, and
k is a unit vector in the z direction. Ay, Ay, and A, are called the x, y, and z components (respectively) of
vector A, and are the projections of the vector onto those axes.

The magnitude (“length”) of vector A is

Al = A = ,/A2 + A2 + A2 (M.2)

For example, if A = 3i + 5j + 2k, then |A| = A = /3% + 52 + 22 = /38.
In two dimensions, a vector has no k component: A = A,i + A,j.

Addition and Subtraction
To add two vectors, you add their components. Writing a second vector as B = Byi + B, j + Bk, we have
A+B=(Ax + By)i+ (4, + By)j+ (4. + B k. (M.3)

For example, if A = 3i + 5j + 2k and B = 2i — j + 4k, then A + B = 5i + 4j + 6k.
Subtraction of vectors is defined similarly:

A_B:(Ax—Bx)i"‘(Ay_By)j"‘(Az_Bz)k- (M.4)

For example, if A = 3i + 5j + 2k and B = 2i — j + 4k, then A — B =i + 6j — 2k.

Scalar Multiplication
To multiply a vector by a scalar, just multiply each component by the scalar. Thus if ¢ is a scalar, then
cA =cAxi+ cAyj+ cAk. (M.5)

For example, if A = 3i + 5j + 2k, then 7A = 21i + 35j + 14k.
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Dot Product

It is possible to multiply a vector by another vector, but there is more than one kind of multiplication between
vectors. One type of vector multiplication is called the dot product, in which a vector is multiplied by another
vector to give a scalar result. The dot product (written with a dot operator, as in A - B) is

A-B=ABcosf = A, B, + A, B, + A, B, (M.6)

where 6 is the angle between vectors A and B. For example, if A = 3i + 5j + 2k and B = 2i — j + 4k, then
A-B=6-5+8=0.

The dot product can be used to find the angle between two vectors. To do this, we solve Eq. (M.6) for 6
and find cos§ = A - B/(AB). Applying this to the previous example, we get A = /38 and B = /21, so
cos @ = 9/(+/38+/21), and thus 6 = 71.4°.

An immediate consequence of Eq. (M.6) is that two vectors are perpendicular if and only if their dot
product is zero.

Cross Product

Another kind of multiplication between vectors, called the cross product, involves multiplying one vector by
another and giving another vector as a result. The cross product is written with a cross operator, as in A x B.
It is defined by

AxB = (ABsin6)u (M.7)
i j k

=| A4, A, A, (M.8)
B. B, B,

= (AyB, — A By)i— (AyB, — A;By) j+ (A B, — A, B,) k, (M.9)

where again 6 is the angle between the vectors, and u is a unit vector pointing in a direction perpendicular
to the plane containing A and B, in a right-hand sense: if you curl the fingers of your right hand from
A into B, then the thumb of your right hand points in the direction of A x B (Fig. M.1). As an example, if
A =3i+5j+2kand B = 2i—j+ 4k, then A x B = (20— (-2))i—(12—4)j+ (-3—-10)k = 22i—8j—13k.

Rectangular and Polar Forms

A two-dimensional vector may be written in either rectangular form A = Axi + A, j described earlier, or in
polar form AZ6, where A is the vector magnitude, and 0 is the direction measured counterclockwise from
the +x axis. To convert from polar form to rectangular form, one finds

Ax = Acos6 (M.10)
A, = Asinf (M.11)

Inverting these equations gives the expressions for converting from rectangular form to polar form:

A= Jaz 12 (M.12)

A
tan@ = A—y (M.13)

X
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Figure M.1: The vector cross product A x B is perpendicular to the plane of A and B, and in the right-hand
sense. (Credit: “Connected Curriculum Project”, Duke University.)
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Appendix N

Matrix Properties

This appendix presents a brief summary of the properties of 2 x 2 and 3 x 3 matrices.

2x2 Matrices

Determinant

The determinant of a 2 x 2 matrix is given by the well-known formula:
a b
= — be. N.1
det(cd) ad — bc (N.1)

Matrix of Cofactors

The matrix of cofactors is the matrix of signed minors; for a 2 x 2 matrix, this is

a b d —c
cof(c d):(—b a) (N.2)

Inverse

Finally, the inverse of a matrix is the transpose of the matrix of cofactors divided by the determinant. For a
2 X 2 matrix,

a b\ 1 d —b
(c d) :ad—bc(—c a) N3
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3x3 Matrices

Determinant

The determinant of a 3 x 3 matrix is given by:

det =alei — fh)—b(di — fg) + c(dh — eg). (N.4)

o AR

b
e
h

N.\Q

Matrix of Cofactors

The matrix of cofactors is the matrix of signed minors; for a 3 x 3 matrix, this is

a b ¢ ei—fh fg—di dh—eg
cof | d e f |=| ch—bi ai—cg bg—ah (N.5)
g h i bf —ce c¢d—af ae—bd
Inverse

Finally, the inverse of a matrix is the transpose of the matrix of cofactors divided by the determinant. For a
3 x 3 matrix,

-1

a b ¢ 1 ei— fh ch—bi bf —ce
d e f = - - fe—di ai—cg cd—af
g h i alei — fh) = b(di — fg) + c(dh —eg) dh—eg bg—ah ae—bd

(N.6)
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Appendix O

TI-83+ Calculator Programs

Programs in this appendix are written for the Texas Instruments TI-83+ graphing calculator and similar mod-
els with the Z80 processor, using the built-in TI-BASIC language. Refer to Chapter 16 of the TI-83+ Guide-
book for instructions on entering and running a program in the calculator.

0.1 Pendulum Period

Given the length L and amplitude 8 of a simple plane pendulum, this program finds the period 7', using the
series expansion of Eq. (??) in Appendix 2?.

To run the program, execute program PEND. At the prompt L=? enter the pendulum length L in meters
followed by ENTER. At the prompt =2 enter the pendulum amplitude 6 in degrees followed by ENTER.
The program returns the period 7" in seconds.

After running the program, the calculator will be set to degrees mode.

Program Listing

PROGRAM: PEND

:Degree

:Prompt L, 0

:1->T

:For (N, 1,34)

ST+ (((2#N) 1/ (27 (2%N) * (N1)2))2)  (sin(0.5%0) ) ~ (2*N) >T
:End

:2*71*\/‘(L/9.8)*T—>T

:Disp "T=",T

Example. Let T = 1.2 m and & = 65°. Enter the above program, press PRGM and execute program
PEND. At the prompt L=? enter 1.2 ENTER. At the prompt 6= enter 65 ENTER. The program returns
T = 2.389769497 sec.
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Appendix P

TI Voyage 200 Calculator Programs

Programs in this appendix are written for the Texas Instruments Voyage 200 graphing calculator and similar
models with the Motorola 68000 processor (TI-89 and TI-92), using the built-in TI-BASIC language. Refer
to the “Programming” chapter of the Voyage 200 Graphing Calculator manual for instructions on entering
and running a program in the calculator.

P.1 Pendulum Period

Given the length L and amplitude 0 of a simple plane pendulum, this program finds the period 7', using the
series expansion of Eq. (??) in Appendix ??.

To run the program, execute program pend (). At the prompt 1=? enter the pendulum length L in
meters followed by ENTER. At the prompt 6=? enter the pendulum amplitude 6 in degrees followed by
ENTER. The program returns the period 7" in seconds.

After running the program, the calculator will be set to degrees mode.

Program Listing

:pend ()
:Prgm
:setMode ("Angle", "Degree")
:Prompt 1,0
1>t
:For n,1,34
t+((2%n) !/ (27 (2%n)*(n!)"2)) 2% (sin(.5%0)) " (2*n) —t
:EndFor
:Z*n*vfﬁl/9.8)*t—>t
:Disp "T=",t
:EndPrgm

Example. Let T = 1.2 m and § = 65°. Enter the above program, and execute program pend ().
At the prompt 1=? enter 1.2 ENTER. At the prompt §= enter 65 ENTER. The program returns 7 =
2.389769497 sec.
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Appendix Q

HP 35s / HP 15C Calculator Programs

Programs in this appendix are written for the Hewlett-Packard HP 35s and HP 15C scientific calculators, but
can be easily modified to run on other HP calculators that use HP RPN.

Q.1 Pendulum Period

Given the length L and amplitude 0 of a simple plane pendulum, this program finds the period 7', using the
series expansion of Eq. (??) in Appendix ??.
To run the program, enter:

L ENTER 6 XEQ P ENTER (HP 35s)
L ENTER 6 f A (HP 15C)

where L is in meters and 6 is in degrees. The program returns the period 7" in seconds.
After running the program, the calculator will be set to degrees mode.

Program Listings

HP 35s HP 15C
PO01 LBL P 001- 42,21,11 f LBL A
P002 DEG 002- 43 7 g DEG
P003 STO G 003- 44 .0 STO .0
P004 x<>y 004- 34 X2y
P0O05 STO L 005- 44 .1 STO .1
P006 1 006- 1 1
P0O07 STO T 007- 44 .2 STO .2
P008 1.034 008- 1 1
P0O09 STO K 009- 48 .
PO10 RCL K 010- 0 0
PO11 INTG 011- 3 3
P012 STO N 012- 4 4
PO13 2 013- 44 .3 STO .3
P014 X 014- 42,21, O f LBL O
PO15 ! 015- 45 .3 RCL .3
PO16 2 0l6- 43 44 g INT
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P017 RCL N 017- 44 .4 STO .4
P018 2 018- 2 2
P019  x 019- 20 X
P020  y* 020- 42 0 f x!
P021 =+ 021- 2 2
P022 RCL N 022- 45 .4 RCL .4
P023 ! 023- 2 2
P024  x? 024- 20 X
P025 =+ 025- 14 y*
P026  x? 026- 10 =
P027 RCL G 027- 45 .4 RCL .4
P028 2 028- 42 0 £ x!
P029 = 029- 43 11 g x?
P030  SIN 030- 10 =
P031 RCL N 031- 43 11 g x?
P032 2 032- 45 .0 RCL .0
P033 X 033- 2 2
P034  y* 034- 10 -
P035 X 035- 23 SIN
P036  STO+T 036- 45 .4 RCL .4
P037 ISG K 037- 2 2
P038  GTO P010 038- 20 X
P039 RCL L 039- 14 y*
P040 9.8 040- 20 X
P041 =+ 041- 44,40, .2 STO+.2
P042 X 042- 42, 6,.3 f IsG .3
P043 2 043- 22 0 GTO 0
P044 X 044- 45 .1 RCL .1
P045 7w 045- 9 9
P046 X 046- 48 .
P047 RCL T 047- 8 8
P048  x 048- 10 -
P049 RTN 049- 11 Jx
050- 2 2
051- 20 X
052- 43 26 g
053- 20 X
054- 45 .2 RCL .2
055- 20 X
056- 43 32 g RTN

Program: LN=162 CK=B742

Example. Let L = 1.2 m and 0 = 65°. Enter the above program, then type:

ENTER 65 XEQ P ENTER (HP 35S)

1.2
1.2 ENTER 65 f A (HP 15C)

The program returns 7 = 2.3898 sec.
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Appendix R

HP 50g Calculator Programs

Programs in this appendix are written for the Hewlett-Packard HP 50g scientific calculator and other HP
calculators that use HP User RPL (e.g. the HP 48 series).

R.1 Pendulum Period

Given the length L and amplitude 0 of a simple plane pendulum, this program finds the period 7', using the
series expansion of Eq. (??) in Appendix ??.

After entering the program, store it into variable PEND. Then to run the program, enter: L ENTER 6
PEND, where L is in meters and 6 is in degrees. The program returns the period 7" in seconds.

After running the program, the calculator will be set to degrees mode.

Program Listing

L1 —>1L.,0,T
<« DEG
1 34
FOR N
2N+ !22N+*"/N!8Q/8SQ682/SIN2N=*= " % T+ 'T' STO
NEXT
L9.8/\/—2*7[*T*—>NUM>>
>

Store the program into variable PEND.

Example. Let L = 1.2 m and 8 = 65°. Enter the above program, store into variable PEND, and type 1. 2
ENTER 65 PEND. The program returns 7 = 2.3898 sec.
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Appendix S

Fundamental Physical Constants —
Extensive Listing

The following tables, published by the National Institutes of Science and Technology (NIST), give the current
best estimates of a large number of fundamental physical constants. These values were determined by the
Committee on Data for Science and Technology (CODATA) for 2010, and are a best fit of the constants to
the latest experimental results. (Source: http://physics.nist.gov/constants)
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Fundamental Physical Constants — Extensive Listing

Relative std.

Quantity Symbol Value Unit uncert.
UNIVERSAL
speed of light in vacuum [ 299792458 ms~! exact
magnetic constant Ho 4m x 1077 NA~2
= 12.566 370614... x 1077 NA—2 exact
electric constant 1/11c? €0 8.854187817... x 10~ 12 Fm™! exact
characteristic impedance of vacuum poc Zy 376.730313461... Q exact
Newtonian constant of gravitation G 6.67384(80) x 10~ m*kg=ts™2 1.2x1074
G/he  6.70837(80) x 10739 (GeV/c?)™2 12x 1074
Planck constant h 6.626 069 57(29) x 10~34 Is 4.4 %1078
4.135667516(91) x 1071° evVs 2.2x 1078
h)2m h 1.054571726(47) x 1073 Js 44 %1078
6.58211928(15) x 10716 evs 2.2x 1078
e 197.326 9718(44) MeV fm 2.2 % 10~
Planck mass (hc/G)'/? mp 2.17651(13) x 1078 kg 6.0 x 1072
energy equivalent mpc? 1.220932(73) x 1019 GeV 6.0 x 107°
Planck temperature (he®/G)'/2/k Tp 1.416 833(85) x 1032 K 6.0 x 107
Planck length ii/mpc = (hG/c3)1/? lp 1.616 199(97) x 1073° m 6.0 x 1075
Planck time Ip /¢ = (hG/c?)1/? tp 5.39106(32) x 10~14 s 6.0 x 107°
ELECTROMAGNETIC
elementary charge e 1.602 176 565(35) x 10719 C 2.2 x 1078
e/h 2.417989 348(53) x 1014 A1 2.2x 1078
magnetic flux quantum h/2e 9y 2.067 833 758(46) x 10~1° Wb 2.2 x 1078
conductance quantum 2¢2/h Gy 7.748 091 7346(25) x 10~° S 3.2 x 10710
inverse of conductance quantum Gyt 12906.403 7217(42) Q 3.2 x 10710
Josephson constant! 2¢/h K; 483 597.870(11) x 10° Hz V! 2.2x 1078
von Klitzing constant? h/e? = pgc/2a Rk 25812.807 4434(84) Q 3.2 x 10710
Bohr magneton efi/2m, UB 927.400 968(20) x 1026 JT! 2.2x 1078
5.788 381 8066(38) x 10~° eV T ! 6.5 x 10710
us/h 13996 24555(31) x 109 Hz T~ 2.2x 1078
us/he  46.686 4498(10) P 2.2 x 1078
ps/k 0.67171388(61) KT ! 9.1x 1077
nuclear magneton efi/2m, UN 5.050 783 53(11) x 10~27 JT-! 2.2x 1078
3.1524512605(22) x 1078 eV T ! 7.1 x 10710
ux/h o 7.62259357(17) MHzT!  22x10°8
px/he  2.542623527(56) x 1072 m~! T-! 2.2 x 1078
ux/k  3.6582682(33) x 1074 KT ! 9.1 x 1077
ATOMIC AND NUCLEAR
General
fine-structure constant e2/47egfic « 7.297 3525698(24) x 1073 3.2 x 10710
inverse fine-structure constant a~t 137.035999 074(44) 3.2 x 10710
Rydberg constant a®mc/2h R, 10973 731.568 539(55) m! 5.0 x 10712
Reoc 3.289841960364(17) x 10*® Hz 5.0 x 10712
Roohe  2.179872171(96) x 10718 J 4.4 %1078
13.605 692 53(30) eV 2.2 x 1078
Bohr radius /4T R = 4Tegh?/mee? ap 0.52917721092(17) x 1071 m 3.2 x 10710
Hartree energy e?/4megag = 2R he = o Ey 4.359 744 34(19) x 10718 J 4.4 %1078
27.211 385 05(60) eV 2.2 %1078
quantum of circulation h/2m.  3.6369475520(24) x 1074 m? s~} 6.5 x 10719
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h/me 7.2738951040(47) x 107*  m2s~! 6.5 x 10710
Electroweak
Fermi coupling constant® Gr/(he)®  1.166 364(5) x 1075 GeV 2 4.3 x 1076
weak mixing angle* Oy (on-shell scheme)
sin? Oy = s3y = 1 — (mw/mz)? sin? Oy 0.2223(21) 9.5 x 1073
Electron, e~
electron mass Mme 9.109 382 91(40) x 10~3* kg 4.4 x 1078
5.4857990946(22) x 10™*  u 4.0 x 10710
energy equivalent MeC? 8.18710506(36) x 10714 J 4.4 %1078
0.510998928(11) MeV 2.2x 1078
electron-muon mass ratio Me /My 4.83633166(12) x 1073 2.5 %1078
electron-tau mass ratio Me/Me 2.87592(26) x 10~* 9.0 x 107
electron-proton mass ratio Me /My 5.446 170 2178(22) x 10~4 4.1 x 10719
electron-neutron mass ratio Me /My 5.438 673 4461(32) x 1074 5.8 x 10710
electron-deuteron mass ratio Me/Mmq 2.7244371095(11) x 1074 4.0 x 10719
electron-triton mass ratio Me /My 1.8192000653(17) x 1074 9.1 x 10719
electron-helion mass ratio me/my 1.8195430761(17) x 1074
electron to alpha particle mass ratio Me /My, 1.370 933 555 78(55) x 1074 4.0 x 10710
electron charge to mass quotient —e/me —1.758820088(39) x 10 Ckg! 2.2 x 1078
electron molar mass Nam, M(e), M, 5.4857990946(22) x 10~7  kgmol~! 4.0 x 10710
Compton wavelength h/mec Ac 2.4263102389(16) x 10712 m 6.5 x 10719
Ac/2m = aag = a2/4nR s Ao 386.15926800(25) x 1015 m 6.5 x 10710
classical electron radius a?ag Te 2.8179403267(27) x 1071 m 9.7 x 10710
Thomson cross section (87/3)72 Oo 0.6652458734(13) x 10728 m? 1.9 x 107°
electron magnetic moment He —928.476430(21) x 10726 JT-! 2.2 x 1078
to Bohr magneton ratio He /1B —1.001 159 652 180 76(27) 2.6 x 10713
to nuclear magneton ratio e/ N —1838.28197090(75) 4.1 x 10710
electron magnetic moment
anomaly |pe|/pg — 1 ac 1.159 652 180 76(27) x 1073 2.3 x 10710
electron g-factor —2(1 + a.) Je —2.002 319 304 361 53(53) 2.6 x 10713
electron-muon magnetic moment ratio He/ Hu 206.766 9896(52) 2.5 %1078
electron-proton magnetic moment ratio e/ Ihp —658.210 6848(54) 8.1x107°
electron to shielded proton magnetic
moment ratio (H2O, sphere, 25 °C) fe/ s, —658.2275971(72) 1.1 x 1078
electron-neutron magnetic moment ratio e/ tin 960.920 50(23) 2.4 %1077
electron-deuteron magnetic moment ratio e/ f4a —2143.923 498(18) 8.4 x107°
electron to shielded helion magnetic
moment ratio (gas, sphere, 25 °C) He/ 114, 864.058 257(10) 1.2 x 1078
electron gyromagnetic ratio 2|p.|/h Yo 1.760 859 708(39) x 10! sTIT™t 22x1078
Ye/2m 28 024.952 66(62) MHzT-! 2.2 x 1078
Muon, u—
muon mass my 1.883531475(96) x 10728 kg 5.1 x 1078
0.113 428 9267(29) u 25 % 1078
energy equivalent myc? 1.692833667(86) x 10711 J 5.1x 1078
105.658 3715(35) MeV 3.4x1078
muon-electron mass ratio My /e 206.768 2843(52) 2.5 x 1078
muon-tau mass ratio my/me 5.946 49(54) x 102 9.0 x 107
muon-proton mass ratio my/my 0.112609 5272(28) 2.5 x 1078
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muon-neutron mass ratio My /My 0.1124545177(28) 2.5 % 1078
muon molar mass Namy, M(p), M, 0.1134289267(29) x 1073 kgmol~! 2.5 x 1078
muon Compton wavelength h/myc Ao 11.734 441 03(30) x 10715 m 2.5 x 1078

Acu/2m Xcu 1.867 594 294(47) x 10715 m 2.5 x 1078
muon magnetic moment ™ —4.490 448 07(15) x 10726 JT! 3.4 %1078
to Bohr magneton ratio /1B —4.84197044(12) x 1073 2.5 x 1078
to nuclear magneton ratio o/ AN —8.890596 97(22) 2.5 %1078
muon magnetic moment anomaly
|/ (eh/2my) — 1 ay 1.16592091(63) x 1073 5.4 x 1077
muon g-factor —2(1 + ay) I —2.002331 8418(13) 6.3 x 10710
muon-proton magnetic moment ratio o/ op —3.183345107(84) 2.6 x 1078
Tau, T~
tau mass® me 3.16747(29) x 10727 kg 9.0 x 107
1.90749(17) u 9.0 x 1075
energy equivalent mec? 2.84678(26) x 10~10 J 9.0 x 107°
1776.82(16) MeV 9.0 x 1077
tau-electron mass ratio Me/Me 3477.15(31) 9.0 x 1075
tau-muon mass ratio me/my 16.8167(15) 9.0 x 107
tau-proton mass ratio me/my 1.89372(17) 9.0 x 10753
tau-neutron mass ratio me/my 1.89111(17) 9.0 x 107°
tau molar mass Npm; M(t),M: 1.90749(17) x 1073 kgmol~! 9.0 x 107°
tau Compton wavelength h/m.c Acx 0.697 787(63) x 10715 m 9.0 x 107
Aoc/27 A x 0.111056(10) x 10715 m 9.0 x 107°
Proton, p
proton mass mp 1.672621777(74) x 10727 kg 4.4 %1078
1.007 276 466 812(90) u 8.9 x 10711
energy equivalent mpc? 1.503 277 484(66) x 10710 J 4.4 %1078
938.272046(21) MeV 2.2 x 1078
proton-electron mass ratio mp/me 1836.15267245(75) 4.1 x 10710
proton-muon mass ratio mp/my 8.88024331(22) 2.5 % 1078
proton-tau mass ratio mp /My 0.528 063(48) 9.0 x 107
proton-neutron mass ratio My /My 0.998 623478 26(45) 4.5 x 10719
proton charge to mass quotient e/mp 9.578 833 58(21) x 107 Ckg! 2.2 %1078
proton molar mass Namy, M(p), M,  1.007276466812(90) x 1073 kgmol™* 8.9 x 10~
proton Compton wavelength h/my,c Ac,p 1.321409 856 23(94) x 1071° m 7.1 x 10710
Ac,p/2m Ac,p 0.21030891047(15) x 1071 m 7.1 x 10710
proton rms charge radius o 0.8775(51) x 1071 m 5.9 x 1073
proton magnetic moment o 1.410 606 743(33) x 10726 JT! 2.4 x 1078
to Bohr magneton ratio Up/ 1B 1.521032210(12) x 1073 8.1x107°
to nuclear magneton ratio p/ N 2.792 847 356(23) 8.2x 107°
proton g-factor 241,/ fix 9p 5.585 694 713(46) 8.2x 1077
proton-neutron magnetic moment ratio  ju, /iy —1.459898 06(34) 2.4 x 1077
shielded proton magnetic moment s 1.410570499(35) x 10726 JT-! 2.5 x 1078
(H2O, sphere, 25 °C)
to Bohr magneton ratio /1B 1.520 993 128(17) x 1073 1.1 x 1078
to nuclear magneton ratio B/ BN 2.792 775 598(30) 1.1 x 1078
proton magnetic shielding correction
1— pl/pp (H2O, sphere, 25 °C) al, 25.694(14) x 106 5.3 x 1074
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proton gyromagnetic ratio 2y, /h To 2.675222005(63) x 108 sTIT-! 24 x1078
Yp/2W 42.577 4806(10) MHzT-! 2.4 x 108
shielded proton gyromagnetic ratio
ZM;D/TL (H20, sphere, 25 °C) 7{, 2.675153268(66) x 108 S 2.5 %1078
0 /2m 42,576 3866(10) MHzT-! 2.5 x 1078
Neutron, n
neutron mass My 1.674 927 351(74) x 10727 kg 4.4 %1078
1.008 664 916 00(43) u 4.2 x 10719
energy equivalent myc? 1.505 349 631(66) x 10710 J 4.4 %1078
939.565 379(21) MeV 2.2x 1078
neutron-electron mass ratio My /Me 1838.683 6605(11) 5.8 x 10710
neutron-muon mass ratio M /My 8.89248400(22) 2.5 x 1078
neutron-tau mass ratio My /My 0.528 790(48) 9.0 x 107°
neutron-proton mass ratio My /My 1.001 378 419 17(45) 4.5 x 10710
neutron-proton mass difference My — My 2.30557392(76) x 10730 kg 3.3 x 1077
0.001 388 449 19(45) u 3.3 %1077
energy equivalent (mn —mp)c®  2.07214650(68) x 10713 J 3.3 x 1077
1.29333217(42) MeV 33 %1077
neutron molar mass Nam, M(n), M, 1.008 664916 00(43) x 103 kgmol™* 4.2 x 10719
neutron Compton wavelength h/m;,c ACn 1.3195909068(11) x 1071*  m 8.2 x 10710
Acn /2T Acm 0.21001941568(17) x 10~ m 8.2 % 10710
neutron magnetic moment U —0.966 236 47(23) x 10726 JT-! 2.4 x 1077
to Bohr magneton ratio o/ 1B —1.04187563(25) x 1073 2.4 %1077
to nuclear magneton ratio Hn/ N —1.91304272(45) 2.4 x 1077
neutron g-factor 2y, /i In —3.826 085 45(90) 2.4 %1077
neutron-electron magnetic moment ratio  fu,/fte 1.040 668 82(25) x 103 2.4 x 1077
neutron-proton magnetic moment ratio Hn/ —0.684 979 34(16) 2.4 %1077
neutron to shielded proton magnetic
moment ratio (H20, sphere, 25 °C) fn/ 1y, —0.684 996 94(16) 2.4 %1077
neutron gyromagnetic ratio 2|u,|/% T 1.83247179(43) x 108 sTIT7t 24 x 1077
Tn/2T 29.164 6943(69) MHzT-! 24 x 1077
Deuteron, d
deuteron mass mq 3.343 583 48(15) x 10~27 kg 4.4 %1078
2.013553 212 712(77) u 3.8 x 10711
energy equivalent mac? 3.00506297(13) x 10710 J 4.4 %1078
1875.612859(41) MeV 2.2 % 1078
deuteron-electron mass ratio mq/me 3670.4829652(15) 4.0 x 10710
deuteron-proton mass ratio ma/mp 1.999 007 500 97(18) 9.2 x 10~
deuteron molar mass Namq M(d), Mg 2.013553212712(77) x 1073 kgmol™* 3.8 x 1071
deuteron rms charge radius rd 2.1424(21) x 10715 m 9.8 x 1074
deuteron magnetic moment Ha 0.433073489(10) x 1026 JT-! 2.4 %1078
to Bohr magneton ratio fa/pB 0.466 975 4556(39) x 1073 8.4 x 1077
to nuclear magneton ratio Ha /PN 0.857 438 2308(72) 8.4 x107°
deuteron g-factor puq/un gd 0.8574382308(72) 8.4 x 1077
deuteron-electron magnetic moment ratio  fiq/ fte —4.664 345537(39) x 10~* 8.4 x107°
deuteron-proton magnetic moment ratio  1q/pp 0.3070122070(24) 7.7 %1079
deuteron-neutron magnetic moment ratio  f1q/fin —0.448206 52(11) 2.4 %1077
Triton, t
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triton mass my 5.007 356 30(22) x 10727 kg 4.4 %1078
3.015500 7134(25) u 8.2 x 10710
energy equivalent myc? 4.500 387 41(20) x 10719 J 4.4 %1078
2808.921 005(62) MeV 2.2 x 1078
triton-electron mass ratio My /Me 5496.921 5267(50) 9.1 x 10710
triton-proton mass ratio me/mp 2.993 717 0308(25) 8.2 x 10710
triton molar mass Nam; M(t), M,  3.0155007134(25) x 1073 kgmol~! 8.2 x 10710
triton magnetic moment L 1.504 609 447(38) x 10726 JT! 2.6 x 1078
to Bohr magneton ratio /1B 1.622393657(21) x 1073 1.3x 1078
to nuclear magneton ratio e/ PN 2.978 962 448(38) 1.3 x 1078
triton g-factor 24/ pin gt 5.957 924 896(76) 1.3 x 1078
Helion, h
helion mass o 5.006 412 34(22) x 10727 kg 4.4 %1078
3.014 932 2468(25) u 8.3 x 10719
energy equivalent myc? 4.499 539 02(20) x 10719 J 4.4 %1078
2808.391 482(62) MeV 2.2 x 1078
helion-electron mass ratio My /Me 5495.885 2754(50) 9.2 x 10710
helion-proton mass ratio my/mp 2.9931526707(25) 8.2 x 10710
helion molar mass Nymy, M(h), My, 3.0149322468(25) x 1073 kgmol~! 83 x 10710
helion magnetic moment Un —1.074617486(27) x 10726 JT! 2.5 x 1078
to Bohr magneton ratio fn/ B —1.158 740 958(14) x 1073 1.2 x 1078
to nuclear magneton ratio Hn/ N —2.127 625 306(25) 1.2 x 1078
helion g-factor 2/, / px h —4.255250613(50) 1.2 x 1078
shielded helion magnetic moment W —1.074553044(27) x 10726 JT-! 2.5 x 1078
(gas, sphere, 25 °C)
to Bohr magneton ratio wh/ B —1.158671471(14) x 1073 1.2 x 1078
to nuclear magneton ratio /N —2.127497718(25) 1.2 x 1078
shielded helion to proton magnetic
moment ratio (gas, sphere, 25 °C) /e —0.761 766 558(11) 1.4 x 1078
shielded helion to shielded proton magnetic
moment ratio (gas/H»O, spheres, 25 °C) i, /1y, —0.761 786 1313(33) 4.3 x107°
shielded helion gyromagnetic ratio
2|up /R (gas, sphere, 25 °C) o 2.037 894 659(51) x 108 sTIT™1 25x1078
L j2m 32.434 100 84(81) MHzT-! 2.5 x 108
Alpha particle, o
alpha particle mass Mo 6.644 656 75(29) x 10727 kg 4.4 %1078
4.001506 179 125(62) u 1.5 x 1011
energy equivalent mec? 5.97191967(26) x 10710 J 4.4 %1078
3727.379 240(82) MeV 2.2 %107
alpha particle to electron mass ratio M/ Me 7294.299 5361(29) 4.0 x 10710
alpha particle to proton mass ratio Mo/ My 3.972599 689 33(36) 9.0 x 10711
alpha particle molar mass Ny myg M(at), My 4.001506179125(62) x 1073 kgmol™! 1.5 x 10~
PHYSICOCHEMICAL
Avogadro constant Na, L 6.02214129(27) x 1023 mol~! 4.4 %1078
atomic mass constant
my = 5m(*?C)=1u My 1.660 538 921(73) x 10727 kg 4.4 %1078
energy equivalent myc? 1.492 417 954(66) x 10710 J 4.4 %1078
931.494061(21) MeV 2.2 x 1078
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Faraday constant® Nae F 96 485.3365(21) Cmol ™! 2.2 %1078
molar Planck constant Nah 3.9903127176(28) x 10719 Jsmol~! 7.0 x 10710
Nahe  0.119626 565 779(84) Jmmol~! 7.0 x 10719
molar gas constant R 8.3144621(75) Jmol "' K~! 9.1x1077
Boltzmann constant R/Na k 1.380 6488(13) x 10723 JK! 9.1 x 107
8.6173324(78) x 1075 eVK™! 9.1 x 1077
k/h 2.0836618(19) x 1010 HzK~! 9.1 x 107
k/hc 69.503476(63) m- ! K™! 9.1 x 1077
molar volume of ideal gas RT'/p
T =273.15K, p = 100 kPa Vin 22.710953(21) x 1073 m3 mol ! 9.1 x 1077
Loschmidt constant Na /V;, no 2.6516462(24) x 10%° m~3 9.1x 1077
molar volume of ideal gas RT'/p
T =273.15K, p = 101.325 kPa Vin 22.413968(20) x 1073 m? mol~* 9.1 x 107
Loschmidt constant Ny /Vy, no 2.686 7805(24) x 10%° m~3 9.1 x 1077
Sackur-Tetrode (absolute entropy) constant”
5+ In[(2mm kT /h?)3/2 KT /po)
T, =1K, po = 100 kPa So/R —1.1517078(23) 2.0 x 1079
Ty =1K, po = 101.325 kPa —1.1648708(23) 1.9x 1076
Stefan-Boltzmann constant
(m2/60)kY/ R c? o 5.670373(21) x 108 Wm2K* 3.6x10°¢
first radiation constant 27thc? c1 3.74177153(17) x 10716 W m? 4.4 %1078
first radiation constant for spectral radiance 2hc® ¢y, 1.191042869(53) x 10716 Wm? sr™! 4.4 %1078
second radiation constant hc/k 2 1.438 7770(13) x 10~2 m K 9.1 x 107
Wien displacement law constants
b= AmaxT = ¢2/4.965114231... b 2.897 7721(26) x 1073 mK 9.1 x 1077
0 = Vmax/T = 2.821439372...¢/co v 5.8789254(53) x 1010 HzK~! 9.1 x 1077

! See the “Adopted values” table for the conventional value adopted internationally for realizing representations of the volt using the Joseph-
son effect.

2 See the “Adopted values” table for the conventional value adopted internationally for realizing representations of the ohm using the quantum Hall
effect.

3 Value recommended by the Particle Data Group (Nakamura, ez al., 2010).

4 Based on the ratio of the masses of the W and Z bosons mw /mz recommended by the Particle Data Group (Nakamura, et al., 2010). The value for
sin?@w they recommend, which is based on a particular variant of the modified minimal subtraction (¥s) scheme, is sin®Ow (Mz) = 0.23122(15).
5 This and all other values involving my are based on the value of mrc2 in MeV recommended by the Particle Data Group (Nakamura, et al., 2010),
but with a standard uncertainty of 0.29 MeV rather than the quoted uncertainty of —0.26 MeV, +0.29 MeV.

6 The helion, symbol h, is the nucleus of the 3He atom.

7 The numerical value of F to be used in coulometric chemical measurements is 96 485.3401(48) [5.0 x 10~®] when the relevant current is mea-
sured in terms of representations of the volt and ohm based on the Josephson and quantum Hall effects and the internationally adopted conventional
values of the Josephson and von Klitzing constants Kj_go and Rk _go given in the “Adopted values” table.

® The entropy of an ideal monoatomic gas of relative atomic mass A, is given by S = So + 2R In A, — R In(p/po) + 2R In(T/K).
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